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Abstract

This paper considers contests in which the efforts of the players determine
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1 Introduction

A contest is a strategic game in which players expend costly effort in order to
increase their probability of winning a given prize. Since the pioneering work of
Tullock (1980) and Dixit (1987), there is now a large and growing literature on
the theory and application of contests.! One of the most important questions is
the existence and uniqueness of pure Nash equilibrium. It has been extensively
studied under the assumption of an exogenous prize; see e.g. Pérez-Castrillo and
Verdier (1992), Szidarovszky and Okuguchi (1997), Cornes and Hartley (2005), and
Yamazaki (2008).

However, many contests, such as R&D contest and war, involve a form of effort
that changes the size of the total prize as well as its distribution. For instance,
higher R&D effort increases the likelihood of making a more valuable discovery.
Hence, firms’ R&D efforts have a positive externality on the value of the prize. In
a war, the contested land will be damaged by the struggle for it, thereby reducing
the economic value of the prize available to the ultimate victor. Thus, military
conflict have a negative externality of the contest efforts. Chung (1996) has first
analyzed a rent-seeking contest with an endogenous prize (rent), which is increasing
in aggregate efforts of the players. Okuguchi (2005) and Corchén (2007) showed
that there exists a unique symmetric pure Nash equilibrium in Chung’s endogenous
contest with a general contest success function. Shaffer (2006) considers the case in
which increased effort reduces the value of the prize. In these studies, players are
assumed to be identical in terms of abilities and valuations of the prize. In addition,
the authors implicitly assume that all players have budget large enough such that
the budget constraints do not bind at all.

In practical situations, there can be three types of heterogeneity among players
in a contest. First, each player may have a different valuation of the prize (e.g.,
Hillman and Riley, 1989). Secondly, each player may have a different ability to
convert expenditures to productive efforts (e.g., Baik, 1994). Thirdly, players may

1See the excellent survey by Konrad (2007).



face different financial constraints (e.g., Che and Gale, 1997). Hence, in this paper,
we prove that there exists a unique asymmetric pure Nash equilibrium in a contest
with these three type of heterogeneity among players and an endogenous prize. The
method used by Szidarovszky and Yakowitz (1977) and Cornes and Hartley (2005)
will be used to show the existence and uniqueness of the pure Nash equilibrium.
The rest of the paper is organized as follows. Section 2 explains the basic model
and the assumptions. In section 3, we prove that there exists a unique pure Nash

equilibrium. Concluding remarks are presented in Section 4.

2 The Model

Let n be the number of players in a contest. Players are assumed to be risk-neutral.
If z; is player 4’s expenditure in contests, then the probability for winning the prize
is given as
i\Zs

p= Z?il(fj)(xj) @)
where f;(-) is an increasing function for all .2 Szidarovszky and Okuguchi (1997)
called f;(-) player 4’s production function for lotteries. We assume that each player
has a finite wealth f,i, which is the budget constraint on what player i can spend on
contests: z; < I~1¢. Then, in line with most of the existence literature, we adopt the

following assumption.

Assumption 1. For all i the function f; satisfies the following conditions:

fi 1s twice differentiable, f;(0) =0, and f(z;) >0, f; (z:) < 0 for all z; € [0, L;].

Notice that players’ production functions and budgets do not necessarily have to
be identical. A particularly well-studied form for f; is f;(z;) = a;zT, where r > 0 and
a; > 0. This asymmetric form was given an axiomatic foundation by Clark and Riis
(1998), following an earlier axiomatization by Skaperdas (1996) of the symmetric

form.

2 Another interpretation of p; is that each player i receives a fraction i ;,%m,) of the contested

=1

prize.



It will prove convenient to change variables by setting y; = fi(z;) for each 3.
Then the function f;(-) may be thought of as transforming individual expenditure
z; into effective efforts y;. We will henceforth refer to z; as the ezpenditure, and y; as
the effort, of player . Since f; is monotonic, it has a well-defined inverse function,

gi(vs) = f7'(y:)- Then, Assumption 1 (A.1 in what foliows) implies that
g(0) = 0, and gi(ys) > 0, g; () > 0 for all y; € [0, fi(L)]. 2)

The function g;(y;) describes the total cost to player i of generating the level y; of
effort.

Next, we introduce the following assumptions on the prize as a function of the
aggregate effort by all players. Let ¥ = Z;=1 y; be the aggregate effort by all
players and L; = f;(L;) be the player i’s maximum effort due to his or her budget

constraint.

Assumption 2. For all i the value of the prize is endogenously determined by the
aggregate effort: Ry(Y). Ri(Y) is twice differentiable and satisfies R;(Y) > 0 for
Y €[0,> 1, L] and weakly concave inY € [0,3°1, L;].

Notice that the weak concavity property in A.2 allows for positive as well as for
negative externalities of the aggregate effort. For example, a functional form of R;
is Ri(Y) = R; + b)Y, where R; > 0. R, is player i’s intrinsic value of the prize
and b; is ¢’s coefficient of enhancement (if d; > 0) or destruction (if &; < 0) of the
prize by aggregate efforts. A.2, together with A.1, ensures that a player’s expected
payoff is strictly concave function of her own effort. In addition, A.2 implies that
the elasticity of the prize with respect to change in the aggregate effort is at most
unity for positive Y. We will write ¢, = Y R;(Y)/R;(Y) for the elasticity of the prize
of plaver 3.

Then, the expected payoff of player ¢ is described by

Ti(Yi, Yoi) = Ri(Y)ps — 2 = Ri(ys + Y—i)yi fiy_i — gi(w1), (3)

where Y_; = 377, y;. Expression (3) holds if at least one player makes a positive

effort. If y; = O for all i we assume that no player wins the prize so that 7;(0,0) = 0.
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Player 7 is assumed to maximize (3) with respect to y; subject to y; € [0, L;]. Our
analysis of contests is formulated as a simultaneous-move game and the solution

concept we use throughout paper is that of a pure Nash equilibrium.

3 Existence Analysis

We can now calculate the best response of player i. Assume first that Y_; > 0, so
that the other players spend a positive amount of resources on contest activities,
then

371'1; ’ Yi
= R,;(y: + Y- (Y + Yo
B, R (y; 4 )yﬁ_ Y + Ri(y; + Y_,)

(ylr%z)g - g;(yi) (4)

and under assumptions A.1 and A.2

6271-1: " y
=R (y; + Y. — 2Ri(y; + Y_;

Y_,
ES A

Hence m; is strictly concave in g;. The concavity of the payoff functions implies that

&) —9; (%) <0. (5)

the best response functions can be obtained in the form
0 if =) _ gi0) <o,
¢i(Y—'i) = Li if R (L + Y_ )L TY_; + -RI,(L -+ Y_ )m g,:’(Lz) 2 0, (6)
y; otherwise,

where y; is the unique solution of the strictly monotonic equation

’ Y; Y_,; ' _
Ri(yi +Y_;) —.Ta + Ri(y: + 4)m —9:(:) =0 (7)

in interval (0, L;). Observe that by our assumptions the left hand side of (7) strictly
decreases and is continuous in y;, positive at y; = 0 and negative at y; = L;, therefore
there is a unique solution, ¢;(Y_;). We notice that if Y_; = 0, player i’s payoff has
a maximum at a finite and positive value of effort, which can be obtained from the
solution of equation (7) with Y_; = 0 due to assumptions A.1 and A.2. If it is below
Ly, then it is the best response of player i at Y_; = 0 and if it is above L;, then L;
is the best response. It is well known that a vector (41, - ,%,) is an equilibrium if

and only if for all 4, §; is the best response with fixed values of Y_;.
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From (6), we can also rewrite the best responses as functions of the aggregate

effort of all players:

0 if HF —gi(0) <0,
BY) =L if R+ RO — gi(Le) 2 0, 8)
y:* otherwise,
where y;™* solves equation

Y

RN + Ri(¥) T — i) =0 ©

in interval (0, L;). Notice that in the third case of (8), the left hand side is positive at

y; = 0, negative at y; = L;, and strictly decreasing, since it has a negative derivative

given by
0 ! i Y — i ' (Y)(1 — i "
s RMY + RIS - gy = -BC=9) ) <

where the sign comes from assumptions A.1 and A.2. Therefore there is a unique
solution of equation (9), which is a continuously differentiable function of Y > 0 by
the implicit function theorem. Following Wolfstetter (1999, p. 91), we call this func-
tion the inclusive reaction function of player i, which is proposed by Szidarovszky
and Yakowitz (1977).

Then, consider the single-variable equation
D %(Y)-Y =0, (10)
i=1

which must hold at an equilibrium. The left hand side, denoted by H(Y"), has the
following properties. It is continuous, since all ®;(Y") are continuous, H(0) > 0,
since ®;(Y") > 0 for all 4 and H(Y ;- , L;) <0, since ®;(Y) < L;. Therefore, there is
at least one solution. In order to discuss the uniqueness of equilibrium we will need
the derivative of the inclusive reaction function. Implicitly differentiating equation
(9) with respect to Y and considering y; = ®;(Y), we have

q>;y—yi+R;Y—R1-(1_@)_R1-(<I>;Y—y,-) "

ny:j ! —
R, =+ R, v 72 v g;9. =0

Y3 )



implying that

WY R, — Ri(1—¢)(1— %)
R,_(]. - E.,;) + g;'Yz

Here the denominator is always positive but the sign of the numerator is not deter-

a(v) =

mined by assumptions A.1 and A.2. Hence, ®;(Y) is not necessarily monotoric. In
view of equation (10), this fact creates slight additional difficulties in order to prove
uniqueness of equilibrium.

So, consider function

(Y
;50 = B(Y)si + B0 01— 5~ gi(siv) (1)
with s; = 1;/Y. The function h; is the marginal payoff of player i expressed in terms

of aggregate effort and share. Notice that under assumptions A.1 and A.2

ahi " i Y ”
o = R()s— 21— )1 - 5) - ()i < 0

as s; < 1, furthermore

ahi_ R’L(Y) . "
G =~ - a) - Y)Y <.

Hence h;(Y, s;) decreases in both variables. Define now the player i’s share function
S;(Y) = @,(Y')/Y, which is proposed by Cornes and Hartley (2005). It follows from

player i’s inclusive reaction function (8) and equation (11) that we have

(0 im0 <,

1 if Y < L; and hy(Y,1) >0,

Si(Y) = ¢ (12)
LY ifY > L;and hy(Y,L;/Y) >0,

\Si

otherwise,
where s} is the unique solution of equation
: (Y /
R)si+ B 1 o)~ gisir) = 0 (13)

in interval (0,1) if Y < L; or in interval (0, L;/Y) if Y > L,. Notice that if the first

case of (12) occurs, then by the monotonicity of h;(Y, s;), neither cases 2, 3 and 4

7



of (12) can occur, and if one of cases 2, 3 and 4 holds, then the first case must not
occur. Hence for a given value of Y > 0, exactly one case holds. The left hand side
of equation (13) is positive at s; = 0, negative at s; = 1 (for Y < L;) or at 5; = L;/Y
(for Y > L;), and strictly decreases in s;. Therefore, there is a unique solution s;
which is differentiable by the implicit function theorem.

In our further analysis we will need the derivative of the share function. By

differentiating equation (13) with respect to ¥ and considering s; = S;(Y), we have

r / ! ,Y - 3 3 / ” !

implying that

/

_ (g — R)siY + 2G50 — ¢
M= R - g7

The inequality follows since the denominator is negative and the numerator is pos-

S

i

< 0.

itive for ¥’ > 0 in light of assumptions A.1 and A.2. So, S;(Y) is continuous with
constant and strictly decreasing segments. Then, equation (10) can be also rewritten

as
> s -1-0, 19

where the left hand side is non-increasing. Assume that there are two different
solutions ¥ < Y". Then, ¥’ > 0 and at least one S;(Y') > 0. In this case either
Si(Y) = Si(Y') =1or Si(Y) > 5;(¥Y’) and for all § # 4, S;(¥) > S,;(Y"). In the first
case player i has two different maximizers with Y_; = 0, which is impossible, since

; is strictly concave. In the second case

D SiY) > ) S(Y)

i=1 i=1
which is also an obvious contradiction. Therefore, the equilibrium value of Y is
unique. Given an equilibrium ¥, the corresponding unique strategy profile (1, »Tn)
is found by multiplving Y by each player’s share evaluated at ¥: §; = ¥ 9;(V). Hence
we proved the following result:

Theorem 1. Under assumptions A.1 and A.2, there ezists a unique pure Nash

equilibrium in asymmetric contests with endogenous prizes.
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Finally, notice that for each player i and any fixed value of Y_;, the solution
y; = 0 always gives zero payoff value for this player. Therefore, at the best response,
it must be non-negative. Hence, under assumptions A.1 and A.2, each player enjoys

non-negative expected payoff at the equilibrium.

4 Conclusions

This paper provides a proof of the existence and uniqueness of the equilibrium in
asymmetric contests with endogenous prizes where equations (12) and (14) suggest
a practical method to compute it. The results can be applied to many areas, such as
R&D contests, military conflicts, labor tournaments, and cooperative productions

in which the size of prize is endogenously determined.
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