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Abstract

This paper demonstrates that the delay has a dual effects of being destabilizer and stabilizer.
For this purpose, we use a traditional neoclassical growth model augmented with two continu-
ously distributed time delays, time-to-build delay and time-to-depreciate delay. Applying the
Routh-Hurwitz stability criterion, we first construct a condition under which a stationary state
loses stability and bifurcates to a cyclic oscillations. It is then numerically demonstrated that
the delay has the dual effects: the main role of the delay is to destabilize an otherwise sta-
ble economy and it is found that the delay can also stabilize the economy, depending on the
combination of two delays. The dual effect is specific to a two delay dynamic model.
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1 Introduction

The seminal work of Kalecki (1935) indicates that a delay inevitably occurred in economic activities
can be an essential source of macroeconomic dynamics. After a long "gestation period" in which
only a limited works on delay dynamics have been done, it has been demonstrated in the recent
literature that capital accumulation in a continuous-time framework could be cyclic or chaotic. This
finding indicates that a delay equilibrium model of a dynamic economy may explain a wide variety
of dynamics behavior ranging from simple convergence to erratic oscillations. In particular, Zak
(1999) rebuilds the neoclassical growth model of Solow and Swan in such a way that the current
capital stock is adjusted by the savings and the stock depreciation at some preceding time and
shows two main results: one is that stable equilibrium of the traditional neoclassical growth model
becomes a saddle point and the other is that endogenous cycle can emerge if the initial point can
be taken from a center manifold. Matsumoto and Szidarovsky (2011, 2013) reconsider the discrete-
time model of Day (1982) in the continuous time framework augmented with a production delay
and numerically confirm the birth of complex dynamics involving chaos through ala period-doubling
cascade. Bianca et al. (2013) generalize Zak’s version of the neoclassical model by introducing two
delays. Only recently Guerrini et al. (2017) apply the method developed by Gu et al. (2005) for
the two delay model and construct a conditions under which a steady state loses stability or gains
stability.

There are two types of delay, fixed time delay and continuously distributed time delay (fixed
delay and continuous delay henceforth). The former is applicable in economic situations in which
an institutionally or socially determined fixed period of time delay is presented. The latter is
appropriate for economic situations in which different lengths of delays are distributed over the
different economic agents. The choice of the type has situation-dependency. The neoclassical
growth model is usually considered to describe Robinson Crusoe economy in which Robinson has
two faces, he is a household and at the same time, a producer. In such a one-man economy fixed
delay is most appropriate. We should remember that the neoclassical model itself has dual nature.
It can be considered to possess a general equilibrium structure in which many households and many
producers are involved and make trade of their outputs through markets. In the existing literature,
however, applications of continuous delays are so far very few. It has not yet been determined
whether or not cyclic capital accumulation may appear in the case in which fixed delays are replaced
with continuous delays. The main propose of this study is to demonstrate the possibility of cyclic
or possibly erratic capital accumulation under continuous delays.

The rest of the paper is organized as follows. Section 2 constructs a continuous delay version of
the neoclassical growth model and discusses dynamics of two special cases, one with no delays and
the other has two delays whose weighting function is exponentially declining. Section 3 examines the
case in which the delay associated with production has weak delay kernel and the delay associated
with capital depreciation has strong delay kernel. In Section 4 the weak and strong kernels are
interchanged. Finally Section 5 provides concluding remarks.

2 The model

Zak (1999) introduced a discrete time delay into the Solow model and obtained the following delay
differential equation

.

k(t) = skα(t− τ)− δk(t− τ), (1)
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where k denotes capital stock, α is a constant with 0 < α < 1, s ∈ (0, 1) is a constant saving rate,
δ > 0 is capital depreciation, and τ > 0 represents a time delay. It is well known that dynamical
systems with distributed delay are more general than those with discrete delay. So we propose the
following Solow model with distributed delays

.

k(t) = s




t�

−∞

W (t− r, S,m)k(r)dr





α

− δ

t�

−∞

W (t− r, T, n)k(r)dr, (2)

where m and n are nonnegative integers, T and S are positive real parameters, and the delay kernel
W is given by the gamma-type distribution

W (t− r, ζ, l) =

�
l + 1

ζ

�l+1
(t− r)le−

(l+1)
ζ

(t−r)

l!
.

for ζ = S, T and l = m,n. Parameter ζ is associated with the average length of the continuous delay
and l determines the shape of the weighting function. The two special cases l = 0 and l = 1 are
called weak delay kernel and strong delay kernel, respectively. Notice that as ζ → 0 the distribution
function approaches the Dirac distribution. Thus, one recovers the discrete delay case.

Letting x(t) = k(t) − k∗ transfers k = k∗ to the origin, where k∗ is the non-trivial equilibrium
of (1), namely k∗ is the unique solution of skα−1∗ = δ. The linearized equation of (2) at the origin
has the form

.
x(t) = αδ

t�

−∞

W (t− r, S,m)x(r)dr − δ

t�

−∞

W (t− r, T, n)x(r)dr. (3)

In Eq. (3), we look for the solution in the exponential form x(t) = x(0)eλt to obtain the associated
characteristic equation, which is given by

λ− αδ

t�

−∞

W (t− r, S,m)e−λ(t−r)dr + δ

t�

−∞

W (t− r, T, n)e−λ(t−r)dr = 0. (4)

Introducing the new variable z = t− r, and using the definition of the Gamma function, we get

t�

−∞

W (t− r, ζ, l)e−λ(t−r)dr =

+∞�

0

W (z, ζ, l)e−λzdz

=

�
l + 1

ζ

�l+1
1

l!

+∞�

0

zle−(
l+1
ζ
+λ)zdz

=

�
1 +

λζ

l + 1

�−(l+1)
.

Using this relation in (4), the characteristic equation becomes

λ− αδ

�
1 +

λS

m+ 1

�−(m+1)
+ δ

�
1 +

λT

n+ 1

�−(n+1)
= 0. (5)
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Eq. (5) is a polynomial equation with degree m+ n+ 3 that can be represented as follows:

b0λ
N + b1λ

N−1 + · · ·+ bN−1λ+ bN = 0, (6)

where the coefficients bj are real constants and N = m + n + 3. We can easily guarantee that
b0 > 0. The Routh-Hurwitz theorem provides conditions that are both necessary and sufficient for
this polynomial to have roots with negative real parts. In order to apply this theorem, we first need
to construct the N ×N Routh-Hurwitz matrix

∆N =






b1 b0 0 0 · · · 0
b3 b2 b1 b0 · · · 0
b5 b4 b3 b2 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · bN





, (7)

where bk = 0 for k > N. The Routh-Hurwitz criterion states that all of the roots of Eq. (6) are
negative or have negative real part if and only if all the principal minors ∆kN (k = 1, 2, ..., N) of
the Routh-Hurwitz matrix (7) are positive. A direct consequence of the Routh-Hurwitz theorem is
that all coefficients bk (k = 1, 2, ..., N) are positive.

Since it is difficult to obtain a general solution of Eq. (5) we draw attention to some special cases
and examine stability of the equilibrium analytically as well as numerically. Before proceeding, we
examine two cases, one for S = T = 0 and the other for m = n = 0. In the former case, we imme-
diately obtain the solution λ = −(1 − α)δ < 0, and thus the equilibrium is locally asymptotically
stable in absence of delays. In the latter case in which both delays have exponentially declining
weights, the characteristic equation (5) becomes a cubic equation in λ,

b0λ
3 + b1λ

2 + b2λ+ b3 = 0 (8)

with

b0 = b0(S, T ) = ST > 0,

b1 = b1(S, T ) = S + T > 0,

b2 = b2(S, T ) = 1 + δS − αδT,

b3 = b3(S, T ) = (1− α)δ > 0.

According to the Routh-Hurwitz criterion, since b1b2 > b0b3, b0 > 0, b1 > 0 and b3 > 0 implies
b2 > 0, the stability condition is validated if b1b2 > b0b3. A direct calculation shows this to hold
when

αδT 2 − T − S(1 + δS) < 0

or

0 < T <
1 +



1 + 4αδS(1 + δS)

2αδ
= T∗.

Notice that the other solution is negative as 1 −


1 + 4αδS(1 + δS) < 0. According to the Hopf

bifurcation theorem, one can establish the existence of a cyclic solution at T = T∗ if the characteristic
equation (8) has a pair of purely imaginary roots and the real parts of these roots change signs with
T which is selected as the bifurcation parameter. When T = T∗, one has

b∗1b
∗

2 = b∗0b
∗

3,
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where b∗j = bj(S, T∗) (j = 0, 1, 2, 3), and so Eq. (8) factors as

(b∗0λ+ b∗1)
�
b∗0λ

2 + b∗2
�
= 0,

yielding a pair of purely imaginary roots

λ1,2 = ±iω∗ with ω∗ =



b∗2
b∗0

> 0

and a real root

λ3 = −
b∗1
b∗0

< 0.

Differentiating Eq. (8) with respect to T, we have

dλ

dT
= −b′0λ

3 + b′1λ
2 + b′2λ

3b0λ
2 + 2b1λ+ b2

, (9)

with
b′0 = b′0(S, T ) = S, b′1 = b′1(S, T ) = 1, b′2 = b′2(S, T ) = −αδ.

It is clear that λ = iω∗ is a simple root of (8), since (8) is cubic and we forward all of its three
roots, which are different. Using (8) one has that (9) becomes

dλ

dT
=
(b′0b1 − b0b

′
1)λ

2 + (b′0b2 − b0b
′
2)λ+ b′0b3

3b20λ
2 + 2b0b1λ+ b0b2

.

Recalling ω2∗ = b∗2/b
∗
0 and b∗1b

∗
2 = b∗0b

∗
3, we derive

Re

�
dλ

dT

�

λ=iω∗

=
b′∗0 b

∗
1b
∗
2 − b∗0b

′∗
1 b

∗
2 − b∗0b

∗
1b
′∗
2

2b∗0(b
∗
0b
∗
2 + b∗21 )

.

Since the numerator of the above expression is equal to S[αδT 2∗ + S(1 + δS)] > 0, only crossing
the imaginary axis from left to right is possible as T increases. Thus, stability of the equilibrium is
lost and the system remains unstable for all T > T∗. The previous analysis can be summarized as
follows.

Theorem 1 Given m = n = 0, the equilibrium point k∗ of (2) is locally asymptotically stable for
T < T∗, unstable for T > T∗ and bifurcates to a limit cycle through a Hopf bifurcation at k∗ when
T = T∗.

3 Heterogenous weights I: m = 0 and n ≥ 1
We now consider the case of m = 0 and n ≥ 1 under which delay T has a bell-shaped weight while
delay S has a declining weight. Substituting m = 0 reduces the characteristic equation (5) to

λ− αδ (1 + λS)−1 + δ

�
1 +

λT

n+ 1

�−(n+1)
= 0.
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or

[λ (1 + λS)− αδ]

�
1 +

λT

n+ 1

�n+1
+ δ (1 + λS) = 0.

With expanding the factored terms, this can be rewritten as a polynomial equation of degree n+3,

b0λ
n+3 + b1λ

n+2 + · · ·+ bn+2λ+ bn+3 = 0 (10)

where the coefficients are defined by

b0 = a0S,

b1 = a1S + a0,

bk = akS + ak−1 − αδak−2 for 2 ≤ k ≤ n+ 1,

bn+2 = 1 + δS − αδT,

bn+3 = (1− α)δ > 0

with

ak =

�
T

n+ 1

�n+1−k �
n+ 1
k

�
. (11)

3.1 m = 0 and n = 1

For m = 0 and n = 1, the characteristic equation (10) takes the form

b0λ
4 + b1λ

3 + b2λ
2 + b3λ+ b4 = 0 (12)

where

b0 = b0(S, T ) =
T 2

4
S > 0,

b1 = b1(S, T ) = TS +
T 2

4
> 0,

b2 = b2(S, T ) = S + T − αδ
T 2

4
,

b3 = b3(S, T ) = 1 + δS − αδT,

b4 = b4(S, T ) = (1− α)δ > 0.

The Routh-Hurwitz criterion now yields the conditions b3 > 0, i.e. α < (1 + δS)/(δT ), and

∆34(T ) = b1b2b3 − b0b
2
3 − b21b4 > 0,

since they imply b2 > 0 as well.
Let λ1, λ2, λ3 and λ4 denote the roots of Eq. (12). Then, we have

λ1 + λ2 + λ3 + λ4 = −
b1
b0

, λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4 =
b2
b0

, (13)

λ1λ2λ3 + λ1λ3λ4 + λ2λ3λ4 + λ1λ2λ4 = −
b3
b0

, λ1λ2λ3λ4 =
b4
b0

. (14)
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If there is T = T∗ such that ∆34(T∗) = 0, by the Routh—Hurwitz criterion at least one root of
Eq. (12), say λ1, has real part equal to zero. As a result, the fourth equation of (14) implies
Imλ1 = ω1 
= 0. Thus, there exists another root of Eq.(12), say λ2, such that λ2 = λ̄1. Since ∆34(T )
is a continuous function of its roots, we conclude that λ1 and λ2 are complex conjugates in an open
interval including T∗. Consequently, Eqs. (13) and (14) at T = T∗ rewrite as

λ3 + λ4 = −
b1
b0

, ω21 + λ3λ4 =
b2
b0

, ω21 (λ3 + λ4) = −
b3
b0

, ω21λ3λ4 =
b4
b0

. (15)

If the roots λ3 and λ4 are complex conjugates, then the first equation of (15) yields 2Reλ3 =
−b1/b0 < 0. On the other hand, if the roots λ3 and λ4 are real, then the first and fourth equations
of (15) lead us to λ3 < 0 and λ4 < 0.

We need to check the transversality condition. For computational purposes, we multiply both
sides of Eq. (12) by b−10 and obtain

λ4 +
b1
b0

λ3 +
b2
b0

λ2 +
b3
b0

λ+
b4
b0
= 0.

Differentiating this equation with respect to T , one has

dλ

dT
= −

�
b1
b0

�′
λ3 +

�
b2
b0

�′
λ2 +

�
b3
b0

�′
λ+

�
b4
b0

�′

4λ3 +
3b1
b0

λ2 +
2b2
b0

λ+
b3
b0

,

where �
b1
b0

�′
= − 4

T 2
,

�
b2
b0

�′
= −4(2S + T )

ST 3
,

�
b3
b0

�′
=
4αδT − 8(1 + δS)

ST 3
,

�
b4
b0

�′
= −8(1− α)δ

ST 3
.

Since ω∗ = b∗3/b
∗
1, we get

�
dλ

dT

�

λ=iω∗

=
1

2

��
b1
b0

�′∗�
b∗3
b∗0

�
−
�
b∗1
b∗0

��
b3
b0

�′∗�

iω∗ +

�
b2
b0

�′∗�
b∗3
b∗0

�
−
�
b∗1
b∗0

��
b4
b0

�′∗

��
b∗1
b∗0

��
b∗2
b∗0

�
− 2

�
b∗3
b∗0

��
iω∗ −

�
b∗1
b∗0

��
b∗3
b∗0

� (16)

Multiplying both the numerator and the denominator of (16) by the conjugate of the denominator,
and using b∗0b

∗2
3 = b∗1b

∗
2b
∗
3 − b∗21 b∗4, we obtain

Re

�
dλ

dT

�

λ=iω∗

=
1

2

−b∗3
b∗0

�
∆34(T )

b30

�′

T=T∗

b∗3
b∗40 b∗1

�
b∗31 b∗3 + (b

∗
1b
∗
2 − 2b∗0b∗3)

2
� = −

b∗30 b∗1

�
∆34(T )

b30

�′

T=T∗

2
�
b∗31 b∗3 + (b

∗
1b
∗
2 − 2b∗0b∗3)

2
� ,

where �
∆34(T )

b30

�′

T=T∗

=
∆3′4 (T∗)b

∗
0 − 3∆34(T∗)b′∗0
b∗40

.
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Finally, we prove that λ = iω∗ is a simple root. Otherwise both iω∗ and −iω∗ are multiple
roots, and since the polynomial is fourth degree, it has to be

b0 (λ− iω)
2
(λ+ iω)

2
= b0(λ

2 + ω2)2

without linear and cubic terms, which is impossible. The previous analysis can be summarized as
follows.

Theorem 2 Assume α < (1 + δS)/(δT ) and ∆34(T ) > 0. Then the equilibrium point k∗ of (2)
is locally asymptotically stable. If there exists T = T∗ such that ∆34(T∗) = 0 and ∆3′4 (T∗)b

∗
0 −

3∆34(T∗)b
′∗
0 < 0, then a Hopf bifurcation occurs at k∗ as T passes through T∗.

We specify the parameter values as s = 0.3, α = 0.5 and δ = 0.1 with which we numerically
confirm Theorem 2.1 In Figure 1(A), the upward sloping solid curve describes ∆34(S, T ) = 0 that
divides the parameter region of (T, S) into two subregions, one is the white region to the left of the
curve in which the equilibrium point is stable (i.e., ∆34(S, T ) > 0) and the other is the gray region
to the right in which the equilibrium point is unstable (i.e., ∆34(S, T ) < 0). Since dynamics of the
equilibrium is switched to instability from stability when the delay S crosses the curve from left
to right, this curve is called the stability switching curve. The upward dotted line is the locus of
b3 = 0 that is in the gray unstable region, implying that b3 > 0 in the white stable region except
at point (1/αδ, 0) where ∆34(S, T ) = 0 and b3 = 0. In order to perform numerical simulations
we apply the linear chain trick technique,2 which allows one to replace an equation with gamma
distributed delay kernels by an equivalent system of differential equations. In consequence, the
delay differential equation (2) with m = 0 and n = 1 becomes a dynamic system of four ordinary
differential equations 





.

k(t) = su(t)α − δv(t),

u̇(t) =
1

S
(k(t)− u(t)),

v̇(t) =
2

T
(z(t)− v(t)),

ż(t) =
2

T
(k(t)− z(t))

(17)

where

.

k(t) = s




t�

−∞

1

S
e−

1
S
(t−r)k(r)dr





α

− δ

t�

−∞

�
2

T

�2
(t− r)e−

2
T
(t−r)k(r)dr,

and new variables are defined by

u(t) =

t�

−∞

1

S
e−

1
S
(t−r)k(r)dr, v(t) =

t�

−∞

�
2

T

�2
(t−r)e− 2

T
(t−r)k(r)dr and z(t) =

t�

−∞

2

T
e−

2
T
(t−r)k(r)dr,

1 This parameter specification is used repeatedly in the following numerical analysis.
2 See MacDonald (1978).
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Selecting two points on the stability switching curve, a = (Ta, Sa) and b = (Tb, Sb), each of which
is denoted by the black dot in Figure 1(A), we obtain corresponding two cycles in Figure 1(B), the
real curve for (Ta, Sa) and the dotted curve for (Tb, Sb).

(A) Stability switching curve (B) Birth of a limit cycle

Figure 1. Dynamics of (2) with m = 0 and n = 1

3.2 Case m = 0 and n→∞
When n becomes infinity large, the characteristic equation (10) reduces to

λ2 +
1

S
λ− αδ

S
+

�
δ

S
+ δλ

�
e−λT = 0. (18)

In absence of delay, i.e. T = 0, Eq. (18) becomes

λ2 +

�
1

S
+ δ

�
λ+

(1− α)δ

S
= 0.

Hence the equilibrium point k∗ of (2) is locally asymptotically stable since its coefficients are both
positive. We take T > 0 and examine whether the stability switch takes place. If λ = iω is a root
of (18) with ω > 0, then substituting it into (18), and separating the real and imaginary parts, we
arrive at the following two equations






ω2 +
αδ

S
=

δ

S
cosωT + δω sinωT,

1

S
ω =

δ

S
sinωT − δω cosωT.

(19)

Squaring both sides, adding the two equations and regrouping by powers of ω, we get

ω4 −
�
δ2S2 − 2αδS − 1

S2

�
ω2 − (1− α2)δ2

S2
= 0, (20)

It is easy to see that Eq. (20) has a unique positive root ω0, where

ω0 =

����δ2S2 − 2αδS − 1 +
��

δ2S2 − 2αδS − 1
�2
+ 4(1− α2)δ2S2

2S2
. (21)

9



Thus, Eq. (18) has a unique pair of purely imaginary roots ±iω0. Solving Eqs. (19) for sinωT and
cosωT yields

cosωT =
α

1 + S2ω2
(22)

and

sinωT =
S2ω3 + (1 + αδS)ω

δ(1 + S2ω2)
.

The critical values T (j) of T for which the characteristic equation (18) has purely imaginary roots
can be determined from (22), and they are given by

T (j) =
1

ω0

�
cos−1

�
α

1 + S2ω20

�
+ 2jπ

�
, j = 0, 1, 2, ... (23)

Proposition 1 Eq. (18) has a pair of simple purely imaginary roots ±iω0 at T = T (j). Moreover,

d (Reλ)

dT

����
T=T (j)

> 0.

Proof. Let λ(T ) = ν(T ) + iω(T ) and denote the root of Eq. (18) such that ν(T (j)) = 0 and
ω(T (j)) = ω0. Plugging λ(T (j)) into (18) ,and taking the derivative with respect to T , one has

�
2Sλ+ 1 + δSe−λT − (δ + δSλ)Te−λT

� dλ
dT

= (δ + δSλ)λe−λT . (24)

It is straightforward from (24) that λ = iω0 is a simple root of (18). If we assume λ = iω0 to be a
repeated root, then (δ + δSiω0) iω0e

−iω0T = 0, leading to a contradiction. From (24), we obtain

�
dλ

dT

�−1
=
(2Sλ+ 1) eλT + δS

(δ + δSλ)λ
− T

λ
.

Therefore,

sign

�
d (Reλ)

dT

����
T=Tj

 

= sign





Re

�
dλ

dT

�−1�����
T=Tj






= sign
$
−δ2S2 + 2αδS + 1 + 2S2ω20

%

= sign

&��
δ2S2 − 2αδS − 1

�2
+ 4(1− α2)δ2S2

'
> 0.

In conclusion, we have the following result.

Theorem 3 Let T (0) be defined as in (23). The equilibrium point k∗ of (2) is locally asymptot-
ically stable when τ ∈ [0, T (0)) and unstable when T > T (0). Furthermore, (1) undergoes Hopf
bifurcations at the equilibrium when T = T (0).
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3.3 m = 0 and n = 2, 3, 4, 5

In two cases, m = 0 and n = 0 and m = 0 and n = 1, we showed the destabilizing effect of the delay
and the birth of a cyclic oscillation just when stability was lost. We now draw attention to various
values of n to see how changing the from of the weighting function affects dynamics. A larger n
graphically means that higher weights are concentrated to a smaller neighborhood of the maximum
point t− T indicating less uncertainty in the length of the delay. The degree of the characteristic
equation becomes larger and so does the order of the leading principal minors of the correspond-
ing Routh-Hurwitz determinant. It then follows that the stability condition become increasingly
untractable. However we can numerically check the stability conditions. ∆kn+3 is already defined
as the k-th order leading principal minor of the Routh-Hurwitz determinant ∆n+3. We illustrate
the stability switching curves of ∆n+2n+3 = 0 for n = 0, 1, 2, 3, 4, 5 in Figure 2.3 The right most curve
corresponds to the stability switching curve in the case of n = 0 and so does the left most boundary
of the gray region in the case of n = 5. It is seen that the stability switching curve shifts leftward
and its slope gets steeper as n increases. It is also confirmed that given n, the equilibrium point is
stable to the left of the corresponding stability switching curve and unstable to the right. The gray
color becomes darker as n increases. Thus the most light-gray region corresponds to the instability
region with n = 0. The darker gray region surrounded by the right most curve and the next right
most curve is added to it to construct the instability region with n = 1. The instability regions
with n ≥ 2 are obtained in the same way, implying that the instability region becomes larger as n
increases. In addition to these, the stability switching curve (23) with j = 0 in the case of n→∞
is illustrated as the left most curve. We summarize the results as follows.

Proposition 2 Given m = 0, when the value of n increases from 0 to 5, the stability switching
curve shift leftward as n increases, implying that increasing n has a destabilizing effect and shrinks
the size of the stability region.

and

Proposition 3 Given m = 0, when n → ∞, the corresponding stability switching curve is located
at left most, implying that the dynamic system with continuously distributed time delay is more
stable than the dynamic system with fixed time delay in the sense that the stability region of the
former is larger.

3 For n ≤ 5, it is numerically confirmed, as we did in Section 3.1, that ∆n+2
n+3

> 0 is sufficient to have ∆k
n+3

> 0

for k = 2, 3, ..., n+ 1. Notice that ∆n+2
n+3

> 0 always leads to ∆n+3
n+3

= (1− α)δ∆n+2
n+3

> 0.
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Figure 2. Stability switching curves for m = 0, n = 0, 1, 2, 3, 4, 5 and n =∞

4 Heterogenous weights II: m ≥ 1 and n = 0

In this section we draw attention to effects caused by increasing the value of m. To this end, we
take n = 0 that is then substituted into the characteristic equation (5) to have the form

λ− αδ

�
1 +

λS

m+ 1

�−(m+1)
+ δ (1 + λT )−1 = 0.

Expanding the factored terms and collecting the terms in order of the powers of λ, we have a
polynomial equation of degree m+ 3,

b0λ
m+3 + b1λ

m+2 + · · ·+ bm+2λ+ bm+3 = 0 (25)

where the coefficients are defined by

b0 = a0T,

b1 = a1T + a0,

bk = akT + ak−1 + δak−2 for 2 ≤ k ≤ m+ 1,

bk+2 = 1 + δS − αδT,

bk+3 = (1− α)δ,

with

ak =

�
S

m+ 1

�m+1−k �
m+ 1

k

�
. (26)

Comparing equation (25) having the coefficients in (26) with equation (10) having the coefficients in
(11) reveals the similarities among them. In consequence, analytical methodologies become similar.
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To avoid unnecessary repetition, we simplify the analysis as much as possible if the similarities are
observed.

4.1 Case m = 1 and n = 0

In this section, we examine the case of m = 1 and n = 0 under which the characteristic equation
(25) becomes a quartic equation

b0λ
4 + b1λ

3 + b2λ
2 + b3λ+ b4 = 0 (27)

where

b0 =
1

4
S2T > 0,

b1 = ST +
1

4
S2 > 0,

b2 = T + S +
1

4
δS2 > 0,

b3 = 1 + δS − αδT,

b4 = (1− α)δ > 0.

The locus of b3 = 0 is positively sloping in the (T, S) plane whereas the slope of the ∆34 = 0 curve is
ambiguous. Both curves pass through point (T0, 0). It is clearly seen that b3 ≤ 0 implies∆34 < 0. The
contraposition of the last statement is that ∆34 ≥ 0 implies b3 > 0. Furthermore, ∆34 > 0 implies
∆24 > 0. Hence, by the Routh-Hurwitz criterion, the stability condition is ∆34 > 0. Solving ∆34 = 0
for b3 and then substituting the resultant solution into (27) we have the factored from of the quartic
equation, �

b1λ
2 + b3

� �
b0b1λ

2 + b21λ+ b1b2 − b0b3
�
= 0. (28)

The equation has two purely imaginary solutions and two other solutions

λ1,2 = ±iβ with β =

(
b3
b1

and

λ3,4 =
−b21 ±



b41 − 4b0b1 (b1b2 − b0b3)

2b0b1
.

where λ3 < 0 and λ4 < 0 if the discriminant of the second solution is positive and Re [λ3,4] < 0 if
it is negative.

Since we can check the transversality condition in the same way as in the case of m = 0 and
n = 1, we omit the detail and jump to the following result:

Theorem 4 Given a value of T, the equilibrium point k∗ of (2) is locally asymptotically stable for
S < S∗ and unstable for S > S∗ whereas it bifurcates to a limit cycle through a Hopf bifurcation
for S = S∗ where S∗ solves

b1b2b3 − b0b
2
3 − b21b4 = 0.
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We now numerically examine dynamic behavior of the unstable equilibrium. The dynamic
system under the investigation consists of the four ordinary differential equations






k̇(t) = su(t)a − δv(t),

v̇(t) =
1

T
(k(t)− v(t)) ,

u̇(t) =
2

S
(z(t)− u(t)) ,

ż(t) =
2

S
(k(t)− z(t)) ,

where the capital accumulation is described by

.

k(t) = s




t�

−∞

�
2

S

�2
(t− r)e−

2
S
(t−r)k(r)dr





α

− δ

t�

−∞

1

T
e−

1
T
(t−r)k(r)dr,

and new variables are defined by

v(t) =

t�

−∞

1

T
e−

1
T
(t−r)k(r)dr, u(t) =

t�

−∞

�
2

S

�2
(t−r)e− 2

S
(t−r)k(r)dr and z(t) =

t�

−∞

2

S
e−

2
S
(t−r)k(r)dr.

Selecting two points, A = (TA, SA) and B = (TB, SB), on the stability switching curve, the points
are denoted by the black dots in Figure 3(A). The resultant cycles are illustrated in Figure 3(B).
The smaller cycle is obtained at point A and the larger cycle at point B.

(A) Stability switching curve (B) Limit cycles

Figure 3. m = 1 and n = 0

4.2 Case m→∞ and n = 0

When the value of m is infinitely large, the characteristic equation (5) turns to be

λ− αδe−λS + δ(1 + λT )−1 = 0.
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In case of no fixed delay (i.e., S = 0), it is reduced to

λ− αδ + δ(1 + λT )−1 = 0

or
Tλ2 + (1− αδT )λ+ (1− α)δ = 0.

If T < 1/αδ = T0, then all coefficients are positive and thus the equilibrium point k∗ is locally
asymptotically stable.

Now let S > 0. The characteristic equation is

λ2 +
1

T
λ+

δ

T
− αδ

�
1

T
+ λ

�
e−λS = 0. (29)

Suppose that λ = iω, ω > 0, is a root of (29) for some S. Substituting it into (29) and separating
the real and imaginary parts yield

αδ cosωS + αδωT sinωS = −ω2T + δ,

αδ sinωS − αδωT cosωS = −ω.
(30)

Adding the squared terms presents the quartic equation in ω,

T 2ω4 +
�
1− 2δT − (αδT )2

�
ω2 + (1− α2)δ2 = 0. (31)

Its roots are

ω2± =
(αδT )2 + 2δT − 1±

√
D

2T 2

where the discriminant D has the following form

D =
�
(αδT )

2
+ 2δT − 1

�2
− 4(1− α2)δ2T 2. (32)

Solving (αδT )
2
+ 2δT − 1 = 0 for T gives the threshold value of T,

T̄ = T0
−1 +

√
1 + α2

α

�
< T0 =

1

αδ

�

such that (αδT )
2
+ 2δT − 1 > 0 for T > T̄ . It is confirmed that D > 0 if T1 < T < T2 where T1

and T2 solve D = 0 and are given by

T1 = T0

(
1 +

√
1− α2

)√
2−



1 +

√
1− α2

*

α
< T0

and

T2 = T0

(
1−

√
1− α2

)√
2−



1−

√
1− α2

*

α
< T0.
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It is also confirmed that T1 < T̄ < T2. Hence (31) has two imaginary solutions, λ± = iω± with
ω+ > ω− > 0.

We determine the sign of the derivative of Re [λ(S)] at the point where λ(S) is purely imaginary.
Differentiating (29) with respect to S presents

&
2λ+

1

T
− αδ

�
1− S

�
1

T
+ λ

��
e−λS

'
dλ

dS
= −αδλ

�
λ+

1

T

�
e−λS .

For convenience, we study (dλ/dS)
−1

instead of dλ/dS

�
dλ

dS

�−1
=

�
2λ+

1

T

�
eλS − αδ

−αδλ
�
λ+

1

T

� − S

λ
.

Therefore

sign

�
d(Reλ)

dS

����
λ=iω

�
= sign

�

Re

+�
dλ

dS

�−1�����
λ=iω

,�

= sign

�

2

+

ω2 − (αδT )
2
+ 2δT − 1
2T 2

,�

= sign
�
±
√
D
�
.

Hence the sign is positive for ω+ and negative for ω−

sign

�
d(Reλ)

dS

����
λ=iω+

�

= sign
�√

D
�

(33)

and

sign

�
d(Reλ)

dS

����
λ=iω−

�

= sign
�
−
√
D
�
. (34)

Solving (30) gives two solutions corresponding to ω2±. In particular, for ω+ and θ+ = S+ω+,

cos θ+ =
1

α
�
1 + T 2ω2+

� > 0 and sin θ+ = −
ω+
αδ

1− δT + T 2ω2+
1 + T 2ω2+

< 0 (35)

where the negative sign is due to

1− δT + T 2ω2+ =
1 + (αδT )

2
+
√
D

2
> 0.

Hence solving the first equation of (35) yields the locus of (T, S) for which there are imaginary
roots,

S+(i) =
1

ω+

�

cos−1

�

− 1

α
�
1 + T 2ω2+

�

�

+ (2i+ 1)π

 

(36)
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where i denotes integer number. For ω2− and θ− = S−ω−,

cos θ− =
1

α
�
1 + T 2ω2−

� > 0 and sin θ− = −
ω−
αδ

1− δT + T 2ω2−
1 + T 2ω2−

(37)

where

1− δT + T 2ω2− =
1 + (αδT )

2 −
√
D

2

and
D −

�
1 + (αδT )2

�
= 4δT (αδT + 1)(αδT − 1).

The sign of sin θ− depends on the values of T. If αδT−1 < 0 or T < T0, then 1−δT+T 2ω2− > 0 that
in turn implies sin θ− < 0. On the other hand, if αδT−1 > 0 or T > T0, then 1−δT+T 2ω2− < 0 that
in turn implies sin θ− > 0. Hence solving the first equation of (37) yields two solutions depending
on whether T is less or greater than T0. Indeed for T < T0, cos θ− > 0 and sin θ− < 0 implying

SA−(j) =
1

ω−

�

cos−1

�

− 1

α
�
1 + T 2ω2−

�

�

+ (2j + 1)π

 

and for T > T0, cos θ− > 0 and sin θ− > 0 implying

SB− (j) =
1

ω−

�

cos−1

�
1

α
�
1 + T 2ω2−

�

�

+ 2jπ

 

.

Several stability switching curves are illustrated in the first quadrant of region (S, T ) in Figure 4.
The red curves are described by S+(0), S+(1) and S+(2), the blue curves are defined for T < T0
and described by SA−(0), SA−(1) and SA−(2). Finally, the green curves are defined for T > T0 and
described by SB− (0) and SB− (1). It is also confirmed that

S+(i) = SA−(i) and T = Ts and SA−(i) = SB− (i+ 1) at T = T0.

Hence each curve is smoothly connected at these points to construct one continuous curve.
The characteristic equation has a pair of purely imaginary roots on the curves and stability or

instability change takes place there. We see the effects caused by a change in S in Figure 4 in which
the equilibrium point is stable in the yellow region and unstable in the gray region. First we take
T = 18 and denote it by T18. Then we obtain the multiple stability switches by increasing the value
of S along the vertical line standing at T = T18.

(i) The equilibrium point is stable for S = 0 and loses stability at point a because the real part of
one eigenvalue becomes positive for a larger value of S due to (33).

(ii) The real part of the eigenvalue becomes zero at point b and instability is switched to stability
by further increases of S due to (34).

(iii) Stability is lost again at point c and never regained by a larger value of S.

Secondly we increase the value of T to 25 and denote it by T25. Using the same procedure, we
increase the value of S along the vertical line at T = T25 and see how different values of S affect
accumulation of the capital stock.
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(i) The equilibrium point is unstable for S = 0 and gains stability at point A at which the positive
real part of one eigenvalue, a source of instability, is zero and then the real parts of all
eigenvalues are negative for a larger value of S.

(ii) Stability is lost at point B and no regain of stability is obtained for any larger values of S
because the vertical line is located in the gray region.

We summarize the main results.

Proposition 4 For n = 0 and m→∞, the stability switching curve is an envelop of S+(i), SB− (i)
and SB−(i) for i ∈ N and stability loss and gain may repeat alternately if the value of τ2 increases
while the value of τ1 is fixed at some positive value.

Figure 4. Stability switching curves

4.3 m = 0, 1, 2, 3, 4, 5 and n = 0

As in Section 2.3, we examine the effects caused by increasing the value of m on dynamics, fixing
the value of n at zero. Increasing the value of m makes the shape of the weighting function more
taller and more thinner. We illustrate six stability switching curves of ∆m+2m+3 for m = 0, 1, 2, 3, 4, 5
in Figure 5 in which the steady state is stable in the gray regions on the right to the curve. It
can be analytically shown that a larger m shifts the stability switching curves leftward, implying a
decrease of the stability region. However the degree of the effect is so small that the curve shifts are
invisible in Figure 5(A). The inside area of the small rectangle in the upper-right corner is enlarged
in Figure 5(B) in which we can see the shifts of the stability switching curves. The right most
curve is the stability switching curve with m = 0 and the left most boundary of the gray region is
the stability switching curve with m = 5. It is seen that as the value of m increases, the stability
switching curve shifts leftward. The stability switching curve in the case of m→∞ is illustrated as
the left boundary of the hatched-line region. It corresponds to the lowest green curve passing point
A in Figure 4, which is described by SB− (0). We summarize the results obtained in this section,
which is very similar to Proposition xx.
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Proposition 5 Given n = 0, when the value of n increases from 0 to 5, the stability switching
curve shifts rightward as m increases, implying that increasing m has a destabilizing effect and
shrinks the size of the stability region.

(A) Stability switching curves (B) Enlargement

Figure 5. Stability regions and shifts of the stability switching curves

5 Concluding Remarks

In this study we have focused on the effects of continuous delays on capital accumulation. Assuming
that the neoclassical growth model has two different delays concerning capital, a time-to-build delay
and a time-to-depreciat delay and both delays have different weighting kernels. We first show that
the model with weaker kernel is more stable than the one with stronger kernel in the sense that the
stability region of the former is larger. Second, in the limiting case in which the continuous delay
converges to the fix delay, the model with the fix delay has the smallest stability region. Third, we
analytically show the existence of a threshold value of the delay, the model is stable for the delay
less than this threshold and becomes unstable for the delay larger than the threshold. Forth, we
numerically demonstrate two dynamic results; one is that a cycle emerges for this threshold value
and the other is that stability loss and gain may repeat alternatively, implying that the delay has a
destabilizing effect as well as a stabilizing effect. Such duality of the delay never appear in one-delay
models.
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