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Abstract

Dynamic duopolies will be examined with product differentiation
and isoelastic price functions. We will first prove that under realis-
tic conditions the equilibrium is always locally asymptotically stable.
The stability can however be lost if the firms use delayed information
in forming their best responses. Stability conditions are derived in
special cases, and simulation results illustrate the complexity of the
dynamism of the systems. Both price and quantity adjusting models
are discussed.
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1 Introduction

Since the pioneering work of Cournot (1838), many researchers have exam-
ined the different variants of oligopoly models. A comprehensive summary
of the earlier work has been presented in Okuguchi (1976), and some ex-
tended models including multiproduct oligopolies are given in Okuguchi and
Szidarovszky(1999). The existence and uniqueness of the equilibrium was
first the main focus of the studies and then the interest has turned to the
different dynamic extensions. The field of dynamic oligopolies is very rich.
It includes models with discrete and continuous time scales, oligopolies with
and without product differentiation, quantity and price adjusting schemes,
multi-product models, rent-seeking and market-share games, labor managed
oligopolies to mention only a few. The complexity of such models is very
well illustrated in Puu (2003) and in Puu and Sushko (2002).

In this paper we will examine dynamic duopolies with product differentia-
tion and isoelastic price functions. In a recent paper Matsumoto and Onozaki
(2006) have analyzed such models with both linear and nonlinear demand
functions. The profitability of quantity and price strategies were compared
and the authors demonstrated circumstances under which complex dynamics
occur. Yousefi and Szidarovszky (2006) have presented a simulation study
with random model parameters in which the number of equilibria, stability
conditions, equilibrium prices were compared in price and quantity adjusting
models. Both discrete and continuous time scales were considered.

2 Differentiated Nonlinear Duopoly Model

There are two firms, firm 1 and firm 2, and two goods, x1 and x2, in a market.
The goods are differentiated, so that each firm faces a different demand curve
and sells its good at different price. Inverse demand functions are given by

P1 =
1

α1x1 + β1x2 + γ1

P2 =
1

β2x1 + α2x2 + γ2

(1)

with αi ∈ R+ and βi, γi ∈ R. Here γi defines the maximum price PM
i = 1

γi

when zero-productions take place. Solving the above equations for xi gives
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direct demand functions,




x1

x2


 =

1

α1α2 − β1β2




α2 −β1

−β2 α1







1

P1

− γ1

1

P2

− γ2


 , (2)

where 1
Pi
−γi > 0 or PM

i > Pi should hold due to the specifications of inverse
demand functions. Substituting new variables qi and θi defined by

qi =
Pi

1− γiPi

and θi =
βi

αi

into (2) gives




x1

x2


 =

1

1− θ1θ2




1

α1

− θ1

α2

− θ2

α1

1

α2







1

q1

1

q2


 .

Further, introducing a new variable pi defined as

pi = αiqi or pi =
αi

γi

Pi

(PM
i − Pi)

,

turns the direct demand into a simplified form,




x1 =
1

1− θ1θ2

(
1

p1

− θ1

p2

)
,

x2 =
1

1− θ1θ2

(
1

p2

− θ2

p1

)
.

(3)

To keep the regular property that demand responds negatively to a change
in its price, we make the following assumption:

Assumption 1. 0 < θi < 1.

Solving (3) for p1 and p2 yields the inverse demand function with new
variables, 




p1 =
1

x1 + θ1x2

,

p2 =
1

θ2x1 + x2

,

(4)
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where θi indicates a degree of differentiation of good i to the other good:
two are perfect substitute for θi = 1, and one firm monopolizes a market
for θi = 0. Assumption 1 is reasonable because the case with differentiated
goods can be considered to be intermediate between the two extreme cases,
the perfect substitute case with θi = 1 and the monopoly case with θi = 0. In
the following, we use the simplified versions of the inverse and direct demand
functions, (4) and (3).

3 Cournot Competition

3.1 Cournot Equilibrium

Firm k produces differentiated good xk with constant marginal cost ck and
sells it with price pk. It determines output so as to maximize its profit,

πk =
xk

xk + θkx3−k

− ckxk,

for k = 1, 2. Solving the first order conditions of interior optimum yields
reaction functions of firms. For the sake of the latter analysis, the implicit
forms are given here:

θkx3−k = ck(xk + θkx3−k)
2. (5)

These implicit expressions define reaction curves in the quantity space. An
intersection of these curves determines Cournot outputs. Dividing (5) with
k = 1 by the one with k = 2 leads to

θ1

θ2

x2

x1

=
c1

c2

(
x1 + θ1x2

θ2x1 + x2

)2

. (6)

By introducing new variables

z =
x2

x1

and c =
c2

c1

,

we can re-write the ratio of the reaction functions, (6), in terms of these new
variables,

c
θ1

θ2

z =

(
1 + θ1z

θ2 + z

)2

. (7)

Since this is a cubic equation in z, it is possible to derive its explicit solutions.
However, they are too complicated to use in the following analysis. Thus,
instead of solving (7) explicitly, we view this equation as the intersection
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of the straight line with the quadratic polynomial and confirm an existence
(i.e., intersection) of a ratio of Cournot outputs. Let us denote the left hand
and right hand sides of (7), respectively, by fc(x) and g(z), namely

fc(z) = c
θ1

θ2

z and g(z) =

(
1 + θ1z

θ2 + z

)2

.

It can be checked that g(z) is positive for all z with a positive intercept
on the vertical axis, bounded from below, strictly decreasing, and strictly
convex in z, 1

g(0) =

(
1

θ2

)2

> 1, lim
z→∞

g(z) = θ2
1 < 1 and g′(z) < 0 and g′′(z) > 0.

Since fc(z) is linear and strictly increasing with fc(0) = 0, the two curves
cross exactly once under Assumption 1. We denote the solution by α that
is a ratio of Cournot outputs produced by the two firms. It is a function of
parameters c, θ1 and θ2. That is,

c
θ1

θ2

α =

(
1 + θ1α

θ2 + α

)2

⇒ α = α(c, θ1, θ2) and α =
xC

2

xC
1

.

The value of α can be any positive number depending on the value of c and
is strictly decreasing in c. In particular, it converges to infinity or zero as
c goes to zero or infinity. Substituting xC

2 = αxC
1 into (6) and solving the

resultant equation for x1 provides explicit expressions of Cournot outputs in
terms of exogenously determined parameters, c, θ1 and θ2:

xC
1 =

αθ1

c1(1 + αθ1)2
=

θ2

c2(θ2 + α)2
,

xC
2 =

θ1

c1(θ1 + α−1)2
=

αθ2

c2(θ2 + α)2
.

(8)

We now consider separately continuous Cournot dynamical systems with-
out and with time delays.

1Differentiating g(z) and g′(z) yields

g′(z) =
2(1 + θ1z)(θ1θ2 − 1)

(θ2 + z)3
< 0,

and

g′′(z) =
2(3− θ1θ2 + 2θ1z)(1− θ1θ2)

(θ2 + z)4
> 0

where the directions of inequalities are due to Assumption 1.
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3.2 Continuous Dynamics without Time Delays

Solving (5) for output gives the explicit form of reaction functions

R1(x2) =

√
θ1x2

c1

− θ1x2,

R2(x1) =

√
θ2x1

c2

− θ2x1.

The continuous dynamic system is

(C1) :





ẋ1(t) = k1 (R1(x2(t))− x1(t)) ,

ẋ2(t) = k2 (R2(x1(t))− x2(t)) ,

where the dot over a variable means a time derivative, and ki (i = 1, 2) is an
adjustment coefficient and assumed to be positive. The Jacobian is

JC =



−k1 k1γ1

k2γ2 −k2


 ,

where γi is the derivative of firm i′s reaction function evaluated at Cournot
equilibrium,

γ1 =
α−1 − θ1

2
and γ2 =

α− θ2

2
. (9)

The characteristic equation is derived as

λ2 + (k1 + k2)λ + k1k2 (1− γ1γ2) = 0.

The linear coefficient is positive. Next we will show that the constant term
is also positive implying that the roots have negative real parts. Clearly,

γ1γ2 =
1

4

(
1 + θ1θ2 − (αθ1 +

1

α
θ2)

)
. (10)

Since α+ 1
α
≥ 2 for any α > 0, we have αθ1 + 1

α
θ2 ≥ 2 min(θ1, θ2). Therefore,

γ1γ2 ≤ 1

4
(1 + [θ1θ2 − 2 min(θ1, θ2]) <

1

4

where the last inequality is due to θ1θ2 − 2θk = θk(θ3−k − 2) < 0. Notice in
addition that the value of γ1γ2 can be any real value between −∞ and 1

4
by

the appropriate choice of α. Thus, we have the following results:

Theorem 1 Given Assumption 1, Cournot continuous model is always lo-
cally asymptotically stable.
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3.3 Continuous Dynamics with Time Delays

Assume that firm k has a time lag Tk in collecting and implementing infor-
mation on the output of the competition as well as a time lag Sk in its own
output. Similar situation occurs when the firms want to react to average
information rather than to sudden changes. Then the dynamic system with
fixed time lags is written as

(C2) :





ẋ1(t) = k1 (R1(x2(t− T1))− x1(t− S1)) ,

ẋ2(t) = k2 (R2(x1(t− T2))− x2(t− S2)) .

This is a system of delayed- (or difference-) differential equations. However,
for the dynamical system with fixed delays, the characteristic polynomial be-
comes a mixed polynomial-exponential equation with infinitely many roots.
So spectrum becomes infinite, and therefore stability analysis becomes com-
plicated. Fixed time delays are not realistic in real economies, since the
length of any delay is uncertain. Therefore continuously distributed time
lags describe the situation more accurately. For the dynamical system with
continuously distributed time lags, we have finite spectrum, and it is well
known that the integro-differential equation is equivalent to a finite set of
ordinary differential equations. Thus, if firm k′s expectation of competitor’s
output is denoted by xe

3−k and that of its own output by xε
k, then the dy-

namism can be written as the system of integro-differential equations

ẋ1(t) = k1 (R1(x
e
2(t))− xε

1(t)) ,

ẋ2(t) = k2 (R2(x
e
1(t))− xε

2(t)) ,

where for k = 1, 2,

xe
k(t) =

∫ t

0
w(t− s, Tk, mk)xk(s)ds,

xε
k(t) =

∫ t

0
w(t− s, Sk, `k)xk(s)ds.

Here the weighting function w(t− s, Γ, n) is defined as

w(t− s, Γ, n) =





1

Γ
e−

t−s
Γ if n = 0,

1

n!

(n

Γ

)n+1

(t− s)ne
−n(t−s)

Γ if n ≥ 1,

where n is a nonnegative integer and Γ is a positive real parameter. Since this
system is equivalent to a system of ordinary differential equations (Chiarella
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and Szidarovszky (2002)), all tools known from the stability theory of differ-
ential equations can be applied in this case as well.

To examine local dynamics of the above system in a neighborhood of the
equilibrium point, we consider the linearized system,

ẋ1,δ(t) = k1

(
γ1

∫ t

0

w(t− s, T1,m1)x2,δ(s)ds−
∫ t

0

w(t− s, S1, l1)x1,δ(s)ds

)

ẋ2,δ(t) = k2

(
γ2

∫ t

0

w(t− s, T2,m2)x1,δ(s)ds−
∫ t

0

w(t− s, S2, l2)x2,δ(s)ds

)

where xk,δ(t) is the deviation of xk(t) from its equilibrium level. Looking for
the solution in the usual exponential form

xk,δ(t) = vke
λt, k = 1, 2,

we substitute this into the linearized system to obtain

(λ + k1

∫ t

0
w(t− s, S1, l1)e

−λ(t−s)ds)v1 − k1γ1

∫ t

0
w(t− s, T1,m1)e

−λ(t−s)dsv2 = 0,

−k2γ2

∫ t

0
w(t− s, T2, m2)e

−λ(t−s)dsv1 + (λ + k2

∫ t

0
w(t− s, S2, l2)e

−λ(t−s)ds)v2 = 0.

Notice next that allowing t →∞ yields

∫ ∞

0

w(s, Γ, n)e−λsds =

(
1 +

λΓ

q

)−(n+1)

with

q =





1 if n = 0,

n if n ≥ 1.

So we have finally



A1(λ) B1(λ)

B2(λ) A2(λ)







v1

v2


 = 0,

where

Ai(λ) =

(
λ

(
1 +

λSi

qi

)(li+1)

+ ki

)(
1 +

λTi

ri

)(mi+1)

,

Bi(λ) = −kiγi

(
1 +

λSi

qi

,

)(li+1)

,
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with

qi =





1, if li = 0

li, if li ≥ 1

and

ri =





1, if mi = 0

mi, if mi ≥ 1.

Non-trivial solution exits if and only if

A1(λ)A2(λ)−B1(λ)B2(λ) = 0

,or

2∏
i=1

(
λ

(
1 + λSi

qi

)(li+1)

+ ki

) (
1 + λTi

ri

)(mi+1)

−
2∏

i=1

kiγi

(
1 + λSi

qi

)(li+1)

= 0.

(11)
If there are no time delays, T1 = T2 = 0 and S1 = S2 = 0, then (11) is
reduced to

(λ + k1)(λ + k2)− k1k2γ1γ2 = 0,

which is the same characteristic equation as the one that we already derived
above. We will next show some simple special cases, where analytical results
can be obtained. The more complicated cases can be examined by using
computer methods.

Case 1. T1 > 0 and T2 = 0.

Let us begin with the simplest case. Assume that only firm 1 has the
information lag about its rival’s output, T1 > 0 and T2 = 0, furthermore
neither firm has lag in its own output, S1 = S2 = 0. We also assume that
m1 = 0. The characteristic equation, (11), becomes

(λ + k1)(λ + k2) (1 + λT1)− k1k2γ1γ2 = 0, (12)

which is cubic in λ:

T1λ
3 + (1 + T1(k1 + k2))λ

2 + (k1 + k2 + T1k1k2)λ + k1k2(1− γ1γ2) = 0. (13)

All coefficients are positive, so roots have negative real parts, according
to Routh-Hurwitz condition,2 if and only if

(1 + T1(k1 + k2)) (k1 + k2 + T1k1k2) > T1k1k2(1− γ1γ2).

2A necessary and sufficient condition that all the roots of equation

a0λ
n + a1λ

n−1 + · · ·+ an = 0
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With fixed T1, k1, and k2, the condition holds if

γ1γ2 > −(k1 + k2)(1 + T1k1)(1 + T1k2)

T1k1k2

.

In Figure 1, in which k1 = k2 = 0.8, the shaded region is a set of (T1, γ1γ2)
for which the above inequality is violated. As can be seen, the Cournot
equilibrium becomes unstable for large negative γ1γ2 while it is stable if
there is no or small time lag as Theorem 1 assures. Thus it can be said that
a time lag on competitor’s output might have a destabilizing effect, which
we sum up as follows.

Insert Figure 1 Here.

Theorem 2 An information lag on competitor’s output might destabilize the
otherwise stable Cournot continuous model.

Let us go back to equation (11) to show the existence of a limit cycle.
According to the Hopf bifurcation theorem, we can establish the existence if
the Jacobian of the dynamical system evaluated at the equilibrium has a pair
of pure imaginary roots and the real part of these roots vary with a bifurcation
parameter.3 We first select 1 − γ1γ2 ≡ z as the bifurcation parameter and
then calculate its value at the point for which loss of stability just occurs.
It is obtained by substituting the stability condition with equality into the
bifurcation parameter,

z∗ = 1− γ1γ2 =
(1 + T1(k1 + k2)) (k1 + k2 + T1k1k2)

T1k1k2

.

In this case, the cubic equation, (13), can be written as

T1λ
3 + (1 + T1(k1 + k2))λ

2 + (k1 + k2 + T1k1k2)λ + k1k2(1− γ1γ2)

=

(
λ +

1 + T1(k1 + k2)

T1

)
(T1λ

2 + (k1 + k2 + T1k1k2)) = 0,

with real positive coefficients have negative real parts is that the following conditions hold,

∣∣∣∣
a1 a0

a3 a2

∣∣∣∣ > 0,

∣∣∣∣∣∣

a1 a0 0
a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣
> 0, · · ·

3See, for example, Guckenheimer and Holmes (1983) for more details of the Hopf bi-
furcation theorem.
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that can be explicitly solved for λ. One of the characteristic roots is negative
real and the other two are pure imaginary:

λ1 = −1 + T1(k1 + k2)

T1

< 0,

λ2,3 = ±i

√
k1 + k2 + T1k1k2

T1

= ±iξ.

To apply the Hopf bifurcation theorem, we need to check whether the real
part of the complex roots is sensitive to a change in the bifurcation parameter.
Suppose λ as a function of z, λ(z), then by implicit differentiation of equation
(13) we have

3T1λ
2dλ

dz
+ 2λ(1 + T1(k1 + k2))

dλ

dz
+ (k1 + k2 + T1k1k2)

dλ

dz
+ k1k2 = 0

implying that

dλ

dz
= − k1k2

3T1λ2 + 2λ(1 + T1(k1 + k2)) + (k1 + k2 + T1k1k2)
.

Rationalizing the right hand side and noticing that the terms with λ are
imaginary and the constant and quadratic terms are real yields the following
form of the real part of the derivative of λ with respect to the bifurcation
parameter:

Re

(
dλ

dz

)
= − k1k2(3T1λ

2 + k1 + k2 + T1k1k2)

(3T1λ2 + k1 + k2 + T1k1k2)2 + (2ξ)2(1 + T1(k1 + k2))2
6= 0,

since at the critical value,

3T1λ
2 + k1 + k2 + T1k1k2 = −2(k1 + k2 + T1k1k2) 6= 0 and ξ 6= 0.

Therefore the Hopf bifurcation theorem applies, and thus a birth of limit
cycle is assured around the equilibrium at the critical value.

In performing numerical simulation we first derived the 3-dimensional
system of ordinary differential equations which is equivalent to our systems
(as described in Chiarella and Szidarovszky (2002)) and then selected the
values of parameters. Returning to Figure 1, we set T1 = Tm where Tm =
1/
√

k1k2. The corresponding value of γ1γ2 for T1 = Tm is

γm = −(k1 + k2)(
√

k1 +
√

k2)
2

k1k2

,
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which is the maximum value γ1γ2 under the current circumstance. Setting
k1 = k2 = 0.8 yields γm = −8. We further set c = 0.01 and θ2 = 0.5. Since,
at the Cournot equilibrium, γm satisfies

γm =
(α(θ1, c, θ2)− θ2)(α(θ1, c, θ2)

−1 − θ1)

4
,

solving the equation gives θ1 = 0.803. Taking account of these parameter
values for which the system loses its stability, we specify the parameter values
as follows:

k1 = k2 = 0.8, θ1 = 0.815, θ2 = 0.5, c1 = 1, and c2 = 0.00975.

Figure 2 displays a complete limit cycle surrounding the Cournot equilibrium
point denoted by C.

Insert Figure 2 Here.

Case 2. T1 > 0 and T2 > 0.

In this case we allow both firms to have a lag about the competitor’s
output. We assume again that m1 = l1 = 0. Then (11) becomes

(λ + k1)(λ + k2)(1 + λT1)(1 + λT2)− k1k2γ1γ2 = 0,

that can be written as a quartic equation in λ,

a0λ
4 + a1λ

3 + a2λ
2 + a3λ + a4 = 0,

where coefficients are defined as

a0 = T1T2,

a1 = T1 + T2 + T1T2(k1 + k2),

a2 = 1 + T1T2k1k2 + (k1 + k2)(T1 + T2),

a3 = k1 + k2 + k1k2(T1 + T2),

a4 = k1k2(1− γ1γ2).

Since all coefficients are positive, the Routh-Hurwitz theorem implies that
roots have negative real parts if and only if

∣∣∣∣
a1 a0

a3 a2

∣∣∣∣ > 0 and

∣∣∣∣∣∣

a1 a0 0
a3 a2 a1

0 a4 a3

∣∣∣∣∣∣
> 0.

12



The first condition is satisfied as a simple calculation shows that the second
order determinant is always positive. It depends on the value of γ1γ2 whether
the second condition is satisfied. Solving the second inequality for γ1γ2 gives
the stability condition

γ1γ2 > −(k1 + k2)(1 + k1T1)(1 + k2T1)(T1 + T2)(1 + k1T1)(1 + k2T2)

k1k2 (T1 + T2 + T1T2(k1 + k2))
2 .

which is clearly violated if γ1γ2 is negative with large absolute values.
The parameter space of positive T1 and negative γ1γ2 is divided into three

areas in Figure 3 in which we set T2 = 1. The white area represents a set of
parameters for which the equilibrium is stable. The shaded area represents a
set of the same parameters for which the equilibrium is unstable. It consists
of two subregions, the light-gray region and the dark-gray region. The form
is the unstable region constructed under the assumption of asymmetric in-
formation lag, T1 > 0 and T2 = 0, which is identical with the shaded region
in Figure 1. On the other hand, the latter is the extended unstable region
due to the assumption of symmetric information lags, T1 > 0 and T2 > 0.
It can be observed that introducing the additional time lag T2 enlarges the
unstable region.

Theorem 3 If each firm has information lag on its competitor’s output, then
the destabilizing effect strengthens.

Insert Figure 3 Here.

Case 3. T1 > 0 and S1 > 0.

Instead of the information lag on the competitor’s production level, we
introduce an information lag on the firm’s own output, S1 > 0 and exam-
ine how such an alternation affects Cournot dynamics. The characteristic
equation (11) becomes

(λ(1 + λS1) + k1)(λ + k2)(1 + λT1)− k1k2γ1γ2(1 + λS1) = 0,

which is also a quartic equation in λ,

a0λ
4 + a1λ

3 + a2λ
2 + a3λ + a4 = 0,

where the coefficients are defined as

a0 = S1T1,

a1 = S1 + T1 + k2S1T1,

a2 = 1 + k2S1 + (k1 + k2)T1,

a3 = k1 + k2 + k1k2(T1 − γ1γ2S1),

a4 = k1k2(1− γ1γ2).
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It is natural to assume for a firm that the information lag on competitor’s
output is longer than the lag on it’s own output.

Assumption 2. Si < Ti for i = 1, 2.

The coefficient a3 is positive under Assumption 2 and γ1γ2 <
1

4
. Applying

the Routh-Hurwitz conditions, which is the same as in Case 2, we derive the
stability conditions as,

γ1γ2 > −T1(1 + (k1 + k2)T1) + S1(1 + k2T1)(1 + k2(S1 + T1))

k1k2S2
1T1

,

and by solving the second condition 4

γ1γ2 > −A + B
√

C

2k1k2S3
1T1

,

where

A = −T 2
1 + S1T1(−1 + (k1 − k2)T1) + k2S

3
1(1 + k2T1)−

S2
1T1(k1 + k2 + k1k2T1),

B = (S1 + T1 + k2S1T1),

C = (T1 + (k2S1 − k1T1)S1)
2 + 4k1S

2
1T1(1 + k2T1).

The second condition is stronger than the first as the following inequality
always holds:

−A−B
√

C

2k1k2S3
1T1

> −T1(1 + (k1 + k2)T1) + S1(1 + k2T1)(1 + k2(S1 + T1))

k1k2S2
1T1

.

Thus the stability of the equilibrium is guaranteed if γ1γ2 is nonnegative or
negative with small absolute value:

γ1γ2 > −A−B
√

C

2k1k2T1S3
1

.

4The stability condition also imposes the upper bound on γ1γ2,

−A−B
√

C

2k1k2S3
1T1

> γ1γ2.

It can be shown however that the upper bound is decreasing in T1 and S1. Putting S1 = T1

and increasing T1 to infinity yields the convergence of the upper bound to unity, which

is the minimum value of the upper bound and is greater than
1
4
, the maximum value of

γ1γ2. Thus this inequality is as ineffective constraint.

14



In Figure 4 in which we set k1 = k2 = 0.8 and S1 = 1, the parameter
region of T1 and γ1γ2 is divided into three subregions. The white region
implies stability of the equilibrium while the shaded region implies instability.
As in Figure 3, instability in the light-gray subregion is due to the lag on
competitor’s output. As can be seen, the light-grey region is enlarged by
introducing the lag on the firm’s own output. Thus it can be said that the
time lag S1 also has a destabilizing effect.

Insert Figure 4 Here.

Case 4. T1 > 0, T2 > 0 and S1 > 0, S2 > 0.

This is the most general case. By selecting m1 = m2 = l1 = l2 = 1,
equation(11) becomes a polynomial of degree six,

(λ(1 + λS1) + k1)(λ(1 + λS2) + k2)(1 + λT1)(1 + λT2)
−k1k2γ1γ2(1 + λS1)(1 + λS2) = 0,

which can be written as

a0λ
6 + a1λ

5 + a2λ
4 + a3λ

3 + a4λ
2 + a5λ

1 + a6 = 0,

where the coefficients are defined by

a0 = S1S2T1T2,

a1 = S1S2(T1 + T2) + T1T2(S1 + S2),

a2 = S1S2 + (S1 + S2)(T1 + T2) + (1 + k2S1 + k1S2)T1T2,

a3 = (S1 + S2) + (1 + k2S1 + k1S2)(T1 + T2) + (k1 + k2)T1T2,

a4 = 1 + k2S1 + k1S2 + (k1 + k2)(T1 + T2) + k1k2(T1T2 − γ1γ2S1S2),

a5 = k1 + k2 + k1k2((T1 − γ1γ2S1) + (T2 − γ1γ2S2)),

a6 = k1k2(1− γ1γ2).

All coefficients are positive by the same reasons as in Case 3. The Routh-
Hurwitz conditons in this case are

∣∣∣∣
a1 a0

a3 a2

∣∣∣∣ > 0,

∣∣∣∣∣∣

a1 a0 0
a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣
> 0,

∣∣∣∣∣∣∣∣

a1 a0 0 0
a3 a2 a1 a0

a5 a4 a3 a2

0 a6 a5 a4

∣∣∣∣∣∣∣∣
> 0,
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The first condition can be confirmed. It is possible to solve the second
and third conditions for γ1γ2. However the expressions are so complicated
and difficult to explain that we represent only the numerical result showing
how the instability region is affected.5

In Figure 5, the equilibrium becomes unstable for any combination of T1

and γ1γ2 in the shaded region, which consists of four areas distinguished by
different levels of gray color. The area labelled T1 > 0 is the unstable set in
Case 1. The area increases by the area labelled T2 > 0 if the information
lag T2 is introduced as discussed in Case 2. Replacing T2 with S1 increases
the unstable region by the area labelled S1 > 0 and decreases by the small
area surrounded by two bold lines in the lower-left corner. It is thus unde-
termined which effects is stronger, the destabilizing effect caused by T2 or
the one by S1. Finally the area labelled S2 > 0 represents an increase of the
unstable region if all of four lags are taken into account. Figure 5 exhibits
that the unstable region enlarges as the number of lags increases. However,
different specification of parameters gives rise qualitatively a different result.
In Figure 6, two different cases can be observed: one is that T2 has a stronger
destabilizing effect than S1 as the enlargement of the unstable region caused
by T2 is much larger than the one by S2; the other shows that increasing the
number of lags stabilizes the market as indicated by the contraction of the
area labelled S2.

Insert Figures 5 and 6 Here.

Given θ1 and θ2 equation (10) indicates that γ1γ2 can become larger
negative for either smaller α or larger α. We have checked that α is decreasing
in c. Thereby α is smaller or larger according to the fact that c is larger or
smaller. Since c is the ratio of production costs, a larger or smaller c is due to
production inefficiency between the two firms. We summarize this instability
result as follows.

Theorem 4 Strong production efficiency can be a source of Cournot insta-
bility if continuously distributed time lag is involved in obtaining and imple-
menting information about rival’s output.

5It is numerically confirmed that the stability condition derived from the third condition
is stronger than the one from the second condition. So only the stronger condition is
depicted in Figure 5.
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4 Bertrand Competition

4.1 Bertrand Equilibrium

Using the direct demand functions, (3), firms set prices of the products to
maximize profits:

π1 =
1

1− θ1θ2

(
1

p1

− θ1

p2

)
(p1 − c1), (14)

and

π2 =
1

1− θ1θ2

(
1

p2

− θ2

p1

)
(p2 − c2). (15)

Assuming interior optimum, the first-order conditions imply the following
implicit forms of the reaction functions: for the first firm,

c1p2 = θ1p
2
1

and for the second firm
c2p1 = θ2p

2
2 .

Solving these equations together for the unknown prices provides the Bertrand
equilibrium prices,

pB
1 = 3

√
c2
1c2

θ2
1θ2

and

pB
2 = 3

√
c1c2

2

θ1θ2
2

.

We then substitute these prices into the direct demand function (3) to obtain
the Bertrand equilibrium outputs:





xB
1 =

1

1− θ1θ2

3

√
θ2
1θ2

c1c2

{
3

√
1

c1

− 3

√
θ2
1θ2

c2

}

xB
2 =

1

1− θ1θ2

3

√
θ1θ

2
2

c1c2

{
3

√
1

c2

− 3

√
θ1θ

2
2

c1

}
.

(16)

In order to eliminate negative production levels, we assume

Assumption 3. θ2
1θ2 < c <

1

θ1θ2
2

.
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4.2 Continuous Dynamics without Time Delays

Solving the implicit forms of Bertrand reaction functions for price gives the
explicit form of reaction functions





RB
1 (p2) =

√
c1p2

θ1

,

RB
2 (p1) =

√
c2p1

θ2

.

The continuous dynamic system is

(B1) :





ṗ1(t) = κ1

(
RB

1 (p2(t))− p1(t)
)
,

ṗ2(t) = κ2

(
RB

2 (p1(t))− p2(t)
)
,

where the dot over a variable means a time derivative, κi (i = 1, 2) is an
adjustment coefficient and assumed to be positive. The Jacobian is

JB =



−κ1 κ1γ

p
1

κ2γ
p
2 −κ2


 ,

where derivatives of firm k’s reaction functions are

γB
1 =

1

2
3

√
c1θ2

c2θ1

and γB
2 =

1

2
3

√
c2θ1

c1θ2

. (17)

So γB
1 γB

1 = 1
4
. The characteristic equation is

λ2 + (κ1 + κ2)λ + κ1κ2(1− γB
1 γB

2 ) = 0.

Since the coefficients are positive, the real part of characteristic roots are
always negative. We summarize this results as follows:

Theorem 5 Bertrand continuous model is always locally asymptotically sta-
ble.

4.3 Continuous Dynamics with Time Delays

Assume now that firm k has continuously distributed time lags in the output
of its competitor as well as in its own output. When the time delays are taken
into account, the Bertrand integro-differential equation system becomes

(B2) :





ṗ1(t) = κ1

(
RB

1 (pe
2(t))− pε

1(t)
)
,

ṗ2(t) = κ2

(
RB

2 (pe
1(t))− pε

2(t)
)
,
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where the expected price is

pe
k(t) =

∫ t

0
w(t− s, Tk,mk)pk(s)ds for k = 1, 2,

and

pε
k(t) =

∫ t

0

w(t− s, Sk, lk)pk(s)ds.

By almost the same procedure as the one we presented above, we have

2∏
i=1

(
λ

(
1 + λSi

qi

)(li+1)

+ κi

) (
1 + λTi

ri

)(mi+1)

−
2∏

i=1

κiγ
B
i

(
1 + λSi

qi

)(li+1)

= 0,

where qi and ri are the same as in equation (11).

If there is no time delay, then T1 = T2 = S1 = S2 = 0, so this equation
reduces to

(λ + κ1)(λ + κ2)− κ1κ2γ
B
1 γB

2 = 0,

which is the same equation that was derived before.

Case 1. T1 > 0 and T2 > 0.

Assume next that S1 = S2 = 0, that is, the firms have no delays in their
own outputs. In this case the characteristic equation becomes

(λ + κ1)(λ + κ2)

(
1 +

λT1

q1

)(m1+1) (
1 +

λT2

q2

)(m2+1)

− κ1κ2γ
B
1 γB

2 = 0.

We will easily prove that the system is always locally asymptotically stable.
To check whether the system can be locally unstable, we assume that Re(λ) ≥
0. Then we have

| λ + κ1 |≥ κ1, | λ + κ2 |≥ κ2, | 1 +
λT1

q1

|≥ 1, | 1 +
λT2

q2

|≥ 1.

Thus

(λ + κ1)(λ + κ2)

(
1 +

λT1

q1

)(m1+1) (
1 +

λT2

q2

)(m2+1)

≥ κ1κ2.

On the other hand we have

| κ1κ2γ
B
1 γB

2 |= κ1κ2

4
< κ1κ2.

Therefore, λ such that Re(λ) ≥ 0 can’t solve the equation. Thus, the equi-
librium is locally asymptotically stable. We summarize this result in the
following way:
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Theorem 6 Bertrand equilibrium is locally asymptotically stable even if time
delays are introduced in the outputs of the competitors.

Case 2. T1 > 0, S1 > 0 and T2 = S2 = 0.

We assume that m1 = l1 = 0 as in the cases of Cournot dynamics.
The characteristic equation is

(λ(1 + λS1) + κ1)(λ + κ2)(1 + λT1)− κ1κ2γ
B
1 γB

2 (1 + λS1) = 0,

which is a quartic equation in λ and can be rewritten as

a0λ
4 + a1λ

3 + a2λ
2 + a3λ + a0 = 0.

This is the same as the one in Case 3 of Cournot dynamics except the sim-
plifying equation γB

1 γB
2 = 1

4
. It can be confirmed by lengthy calculation that

all coefficients are positive and the Routh-Hurwitz stability conditions are
fulfilled. That is,

a1a2−a0a3 = S1(1+κ2T1)+T1(1+κ1T1+κ2T2)+κ2S
2
1(1+

1

4
κ1T1+κ2T2) > 0

and

(a1a2 − a0a3)a3 − a2
0a4 > 0

as T1 ≥ S1. Notice that this condition is realistic. The first inequality is
obvious, and the second can be proved based on the facts, that the value
and derivative with respects to T1 of the left hand side at T1 = S1 are both
positive. Furthermore its second derivative with respect to T1 is also positive.
Hence we have the following result:

Theorem 7 The equilibrium is locally asymptotically stable even if only one
firm faces time delays.

Case 3. T1 > 0, T2 > 0 and S1 > 0, S2 > 0.

With m1 = m2 = l1 = l2 = 0, the characteristic equation becomes

(λ(1+λS1)+κ1)(λ(1+λS2)+κ2)(1+λT1)(1+λT2)−κ1κ2

4
(1+λS1)(1+λS2) = 0,

which is a polynomial equation of degree 6.
The application of the Routh-Hurwitz criterion to check stability is too

complicated in this case. Instead looking for analytical results we performed
a computer study. In a large number (several thousands) of cases we could
always observe local asymptotic stability. So we presume that Bertrand dy-
namics are always asymptotically stable, but we could not prove it in general.
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5 Conclusion

The local asymptotical stability of Cournot and Bertrand dynamics were
examined under the assumption that there is a time delay for the firms in
collecting and implementing information about the outputs of the rivals and
also about their own outputs. We have proved that both dynamics are locally
asymptotically stable without time lag. This stability can be however lost in
Cournot dynamics if time delays are introduced. Stability conditions were
derived and in the case when instability occurs, bifurcation was observed.
For Bertrand dynamics we could prove that local asymptotic stability is
preserved when only one firm faces time lags. We could not prove similar
result in the general case, but simulation study indicates that stability is
maintained even in the general case. For the sake of mathematical simplicity,
we considered only exponential kernel functions (m = l = 0). The analysis
of the asymptotical behavior of the equilibrium with positive m and l values
will be the subject of a future paper.
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