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Abstract

A complete eigenvalue analysis is given for a certain class of dynamic
systems with a single delay. The stability region is determined and it
is demonstrated that there is only one stability switch. Special cases
from economics, biology and engineering illustrate the importance of such
models.

1 Introduction

In examining economic and engineering systems we often face with delayed data
and delayed responses. In the case of �xed delays the system is described by a
di¤erence-di¤erential equation and in the case of continuously distributed delay
the model is a Volterra-type integro-di¤erential equation. Delay models have
many applications in engineering, biology and economics to name only the most
important �elds (Hale (1979); Cushing (1977); Invernizzi and Medio (1991)).
Without time delay the governing dynamic model is a system of ordinary dif-

ferential equations, the asymptotical behavior of the solution trajectories can be
examined by well established methods such as the usage of Lyapunov functions
and local linearization. If the system is linear, then local asymptotical stability
implies global stability, and the spectrum is �nite making the analytic inves-
tigation relatively simple. In the case of continuously distributed delay with
gamma-density weighting functions, the spectrum remains �nite, however for
�xed delays the spectrum is usually in�nite. In the case of linear systems with
�xed delays the characteristic equation is an exponential-polynomial equation.
There is a large literature on delayed equations with one delay (see for example,
Hayes (1950) and Burger (1956) for the earliest studies), however only very few
studies are devoted to multiple delays (see for example, Hale and Huang (1993)
and Piotrowska (2007)).
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In this paper we will consider a special case of nonlinear dynamics with one
delay and will present an elementary analysis of its spectrum which can lead to
a complete understanding of its local asymptotical behavior.

2 Practical Examples

Consider �rst a monopoly where one �rm produces a product and sells it to a
homogeneous market. Let x be the production output of the �rm and p(x) =
a� bx (a; b > 0) the price function. If the �rm determines its production level
based on a delayed price information, then it is a � bx(t � �); where � is the
delay. Assuming gradient adjustment process in the dynamics, in the absence
of time delay the governing dynamic equation would be as follows:

_x(t) = �(x(t))(a� c� 2bx(t)); (1)

since the pro�t is given as

' = x(a� bx)� cx (2)

where c is the �rm�s marginal cost. In the presence of delay, equation (1) has
to be modi�ed as

_x(t) = �x(t)(a� c� 2bx(t� �)) (3)

where we assume that �(x) = �x with a positive coe¢ cient �: The only positive
steady state of the system is

�x =
a� c
2b

:

In order to guarantee that this output level is positive, we have to assume that
a > c: Linearizing equation (3) around �x and introducing the new variable
z = x� �x a single delay ODE is obtained:

_z(t) = �z(t� �) (4)

where  = �(a� c) > 0:
Consider next an electrical system with state feedback, where the feedback

is delayed. Assume the systems equation is linear:

_x(t) = Ax (t)+Bu (t) (5)

where x is the state and u is the input. Let K be the feedback matrix and �
the delay. Then the delayed feedback system can be written as

_x(t) = Ax (t)+B (u(t)+Kx (t� �)): (6)

In the single-dimensonal case this equation reduces to the following:

_x(t) = Ax(t) +BKx(t� �) +Bu(t)
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In the special case of constant input, u(t) � u0; and A = 0 introduce the new
variable z = x+ u0=K to have

_z(t) = BKz(t� �); (7)

which has the same form as equation (4) with  = �BK:
Models in population dynamics are often delayed equations, when reproduc-

tion is not instantenuous. Assuming exponential growth rate, the model can be
written as

_x(t) = rx(t� �) (8)

where r is the reproduction rate and � is the delay. Notice that this equation
also has the form as (4) with r = �:

3 Spectrum Analysis

As usual, we look for the solution in the exponential form z(t) = e�tv; and
substitute it into equation (4) to get

�+ e��� = 0:

Multiplying by � and introducing the new variables � = �� and A = � ; this
equation is simpli�ed as

�+Ae�� = 0: (9)

Assume that � = �+ i� is a complex root. Then

�+ i� +Ae��(cos� � i sin�) = 0:

Equating the real and imaginary parts with zero,

�+Ae�� cos� = 0 (10)

and
� �Ae�� sin� = 0: (11)

From (11),

e�� =
�

A sin�
; (12)

if sin� 6= 0: If sin� = 0; then from (9), � is real and therefore is the solution
of the real equation

Ae�� = ��:

Depending on the value of A, there is either no solution, or 1 or 2 negative
solutions. So the real solutions (if exist) are negative. Assume now that sin� 6=
0; then from (10) and (12),

�+A
�

A sin�
cos� = 0
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showing that
� = �� cot�: (13)

Without losing generality we may assume that � > 0; since if � is a solution
of equation (9), then its complex conjugate is also a solution. From (13) we see
that the real part of � is negative if and only if

� 2 (n�; �
2
+ n�); n = 0; 1; 2; :::

Substituting (13) into relation (11), we get a single-variable equation for � :

1

A
� = e� cot � sin�: (14)

Let f(�) denote the right hand side of this equation. We will next examine
the shape of the graph of this function. Clearly

lim
�!0

f(�) = 0

and for n � 1;
lim

�!n��0
f(�) = 0;

since � cot� converges to �1 as � tends to n� from the left. Similarly

lim
�!n�+0

f(�) =

8<: 1 if n is even

�1 if n is odd

since the value of K = � cot� tends to 1 as � tends to n� from the right and

f(�) = eK
1

K
� cos�:

In addition,

lim
�!�

2+n�
f(�) =

8<: 1 if n is even

�1 if n is odd,

sinceK ! 0 here. Simple di¤erentiation shows that

f 0(�) = cos�e�
cos �
sin � + sin�e�

cos �
sin �

(cos� � � sin�) sin� � � cos2 �
sin2 �

=
1

sin�
e�

cos �
sin � [sin 2� � �]

(15)

Notice that there is a unique �� 2 (0; �=2) such that sin 2�� = ��; and for
� < ��, sin 2� > � and for � > ��; sin 2� < �: Therefore

f 0(�) > 0 if and only if either � 2 (0; ��) or � 2 ((2k � 1)�; 2k�); k = 1; 2; :::
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and

f 0(�) < 0 if and only if either � 2 (��; �) or � 2 (2k�; (2k + 1)�); k = 1; 2; :::

The graph of f(�) is shown in Figure 1. The value of � is the intersection of this
graph with the linear function �=A. Assume �rst that A > �=2: Then function
�=A crosses the � = �=2 vertical line under one, so there is a root between �=2
and �: Here the value of � is positive making the system unstable regardless
of the other solutions. If A < �=2; then there is no intersection between �=2
and �, however depending on the value of A there is the possibility of solution
between 0 and �=2; where � is negative.

Figure 1. Shape of the graph of f(�)

Notice that in this case line �=A crosses the � = �=2 vertical line above one,
so the other intersections with the graph of f(�) are in intervals (2k�; �2 +2k�),
k = 1; 2; :::; where the corresponding � value is negative. Hence we have the
following result.

Proposition 1 Assume A > 0: Then the system (9) is asymptotically stable if
A < �

2 ; and unstable if A >
�
2 :

Consider next the case of A < 0 in equation (9). If sin� = 0; then equation
(11) implies that � = 0; so � is real, and solves equation

� = �Ae��: (16)

This equation always has a positive solution, so the system is always unstable.
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4 Stability Switches

Assume again that A > 0: Stability switches are usually examined by looking
for pure complex eigenvalues � = i� (� > 0 since complex conjugate is also a
solution). With � = 0; equations (10) and (11) are reduced to the more simple
equations

A cos� = 0 (17)

and
� �A sin� = 0 (18)

From (17),

� =
�

2
+ n�;

however from (18), sin� has to be positive, so

� =
�

2
+ 2n� (n = 0; 1; 2; :::)

are the stability switches with the corresponding values of A = �. In order to
detect the direction of the stability switches we consider � as the function of
the bifurcation parameter A: Implicitly di¤erentiating equation (9) with respect
to A gives

�0 + e�� �Ae���0 = 0

showing that

�0 =
e��

Ae�� � 1 =
�

A�+A
=

i�

i�A+A
=
i�(A� i�A)
A2�2 +A2

with real part �2=(A�2 + A) > 0 showing that the real part of the eigenvalue
changes from negative to positive. Notice that A = �=2 is the only stability
switch, since for all A = �

2 +2n� (n � 1) there is an eigenvalue with positive real
part with � 2 (�=2; �) so regardless what happens with the other eigenvalues
the system is unstable anyway. At A = �

2 Hopf bifurcation occurs giving the
possibility of the birth of limit cycles.

5 Conclusions

A special class of dynamic systems was examined where a single delay was
present. Based on elementary analysis the spectrum of the system was com-
pletely described and the stability region characterized. We proved that the
system is asymptotically stable if A < �

2 and unstable if A >
�
2 : If A =

�
2 ; then

Hopf bifurcation occurs. In the model of a monopolistic �rm A = ��; where
� is the delay and  is the product of the marginal speed of adjustment and
the di¤erence of the maximum price and marginal cost. Since both  and � are
positive, the stability region is the domain between the positive branch of the
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hyperbola � = �
2 and the  = 0 positive horizontal axis. Similar interpreta-

tion can be given for the delay electrical systems and for the delay population
dynamic models in the paper.
We also demonstrated that there are in�nitely many values of A which corre-

spond to pure complex eigenvalues, however the smallest such value is the only
stability switch. The case of multiple delays is much more complicated. It will
be the subject of our future study.
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