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Abstract
An n-firm mixed oligopoly is examined with product differentiation,

in which quantity-adjusting firms and price-adjusting firms coexist and
compete with each other. In a mixed duopoly framework, Singh and Vives
(1984) show that a dominant strategy for a firm is a quantity-strategy
if the goods are substitutes and it is a price-strategy if the goods are
complements. It is demonstrated that this clear-cut result in the duopoly
framewor is not necessarily valid in an n-firm oligopoly framework, and a
choice of the dominant strategy depends on the average quality ratio of
the goods produced by the quantity-adjusting and by the price-adjusting
firms.
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1 Introduction
In their seminal paper, Singh and Vives (1984) examine a duopoly with product
differentiation and show, among others, the following clear-cut results:

(i) profits are higher (lower) under Cournot competition than under Bertrand
competition if the goods are substitutes (complements);

(ii) a quantity-adjusting strategy is more (less) profitable than a price-adjusting
strategy if the goods are substitutes (complements).

Under the pure competition in which all firms are either quantity-adjusting
(i.e., Cournot competition) or price-adjusting (i.e., Bertrand competition), Häck-
ner (2000) constructs an n-firm differentiated oligopoly model with n > 2 show-
ing that result (1) is sensitive to the duopoly assumption. In particular, it is
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demonstrated that low-quality firms charge higher price under price competi-
tion than under quantity competition if the goods are complement, which is not
true in the duopoly framework. Recently Matsumoto and Szidarovszky (2008)
complements the results developed by Häckner (2000) and show that there is
a case in which high-qualified firms can charge higher price under the same
circumstance. In those studies, however, the focuses are put only on the pure
competition. As a result, it has not yet been analyzed whether or not result (2)
is true in an n-firm mixed competition in which quantity-adjusting firms and
price-adjusting firms coexist and compete with each other.1

The main purpose of this study is to demonstrate that result (2) is also
sensitive to the duopoly assumption and that the dominant strategy under mixed
competition depends on the ratio of the average qualities of the goods produced
by the quantity-adjusting and by the price-adjusting firms.
In what follows, various forms of demands are introduced in Section 2. The

dominance of a quantity strategy over a price strategy in a mixed duopoly are
reviewed in Section 3. Optimal behavior of the firms under mixed competitions
are considered in Section 4. Our main results on behavioral comparison are
presented in Section 5. Concluding remarks are given in Section 6.

2 Demands
As in Singh and Vives (1984), there is a continuum of consumers of the same
type. Following Häckner (2000), the utility function of the representative con-
sumer is given by

U(q,p) =
nX
i=1

Aiqi −
1

2

⎛⎝ nX
i=1

q2i + 2γ
nX
j 6=i

qiqj

⎞⎠− nX
i=1

piqi (1)

where q = (qi) is the quantity vector, p = (pi) is the price vector, Ai measures
the quality of good i and γ ∈ [−1, 1] measures the substitutability between the
goods: γ > 0, γ < 0 or γ = 0 imply that the goods are substitutes, complements
or independent. Moreover, the goods are perfect substitutes if γ = 1 and perfect
complements if γ = −1. In this study, we confine our analysis to the case in
which the goods are imperfect substitutes or complements and not independent,
by assuming that |γ| < 1 and γ 6= 0.
Solving the first-order conditions of the optimal consumption of good k, we

1The mixed Cournot-Bertrand oligopoly was first considered by Bylka and Komar (1976)
and then extended in various directions. For static study, Szidarovszky and Molnár (1992)
show the equivalence of the equilibrium to the non-linear complementarity problem and also
prove the existence and uniqueness of the Nash equilibrium in an n-firm oligopoly. For dy-
namic study, Matsumot and Onozaki (2005) and Yousefi and Szidarovszky (2005) model the
dynamic process of mixed duopolies with nonlinear demands and show a birth of complicated
fluctuations involving chaos if nonlinearities become stronger.
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obtain its inverse demand function,

pk = Ak − qk − γ
nX
i6=k

qi. (2)

That is, the price vector is a linear function of the output vector:

p = A−Bq (3)

where A = (Ak), B = (Bki) with Bkk = 1 and Bki = γ (i 6= k).
We consider an n-firm mixed oligopoly with product differentiation. The n

firms are divided into two groups. Let K = {1, 2, ...,m} and K̄ = {m+1, ..., n}
be the sets of quantity and price setting firms, respectively. If K̄ is empty,
then the firms are in Cournot competition. If K is empty, then the firms are
in Bertrand competition. In this study we assume n ≥ m + 1 and m ≥ 1 to
draw attention to the mixed oligopoly. In this case, we say that the firms enter
a Cournot-Bertrand (CB) competition. On the other hand, if the strategies are
interchanged, that is, the firms in K are price-adjusting and the firms in K̄ are
quantity-adjusting, then we say that the firms enter a Bertrand-Cournot (BC)
competition. This mixed oligopoly generalizes Cournot and Bertrand oligopolies
in the sense that firms having different strategies coexist.
We start deriving demands that the firms perceive in CB competition. If we

introduce the notation,

qK = (qi)i∈K , q
K̄ = (qı̄)ı̄∈K̄ , p

K = (pi)i∈K , p
K̄ = (pı̄)ı̄∈K̄ ,

then the inverse demand equation (3) can be rewritten as⎛⎝ pK

pK̄

⎞⎠ =

⎛⎝ AK

AK̄

⎞⎠−
⎛⎝ BKK BKK̄

BK̄K BK̄K̄

⎞⎠⎛⎝ qK

qK̄

⎞⎠
where vector A and matrix B are decomposed accordingly, or as

pK = AK −BKKqK −BKK̄qK̄ (4)

and
pK̄ = AK̄ −BK̄KqK −BK̄K̄qK̄ . (5)

In CB competition, the strategy of firm k ∈ K is its output qk and the strategy
of firm k̄ ∈ K̄ is its price pk̄.
We now rewrite the inverse demands relations (4) and (5) in terms of the

strategic variables. Assuming that BK̄K̄ is invertible2 and solving (5) for qk̄

yields

qK̄ =
³
BK̄K̄

´−1
AK̄ −

³
BK̄K̄

´−1
BK̄KqK −

³
BK̄K̄

´−1
pK̄

2BK̄K̄ is the n−m by n−m matrix and has 1 on the diagonal and γ on the off-diagonal.
It is invertible if detBK̄K̄ = (1− γ)n−m−1(1 + (n−m− 1)γ) 6= 0. The diagonal element of
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which is then substituted into (4) to obtain

pK = AK −BKK̄
³
BK̄K̄

´−1
AK̄ −

∙
BKK −BKK̄

³
BK̄K̄

´−1
BK̄K

¸
qK

+ BKK̄
³
BK̄K̄

´−1
pK̄ .

If we further introduce the following notation,

αK̄ =
³
BK̄K̄

´−1
AK̄ , βK̄K =

³
BK̄K̄

´−1
BK̄K , βK̄K̄ =

³
BK̄K̄

´−1
,

αK = AK −BKK̄
³
BK̄K̄

´−1
AK̄ ,

βKK = BKK −BKK̄
³
BK̄K̄

´−1
BK̄K and βKK̄ = −BKK̄

³
BK̄K̄

´−1
,

then pK and qK̄ are written as linear functions of strategic vectors qK and pK̄ :

pK = αK − βKKqK − βKK̄pK̄

and
qK̄ = αK̄ − βK̄KqK − βK̄K̄pK̄ .

The kth components of pK and qK̄ , pk and qk̄, are written as

pk =

(1+(n−m−1)γ)Ak−γ
nP

ī=m+1

Aī−(1−γ)(1+(n−m)γ)qk+γ
nP

ī=m+1

pī−(1−γ)
mP

i=1,i6=k
qi

1+(n−m−1)γ
(6)

and

qk̄ =

(1+(n−m−1)γ)Ak̄−γ
nP

ı̄=m+1

Aı̄−(1+(n−m−2)γ)pk̄+γ
nP

ı̄=m+1,ı̄6=k̄
pı̄−(1−γ)

mP
k=1

qk

(1−γ)(1+(n−m−1)γ) .

(7)
We now turn our attention to the case of BC competition in which pk is the

strategic variable for firm k and so is qk̄ for firm k̄. Since BC competition is dual
to CB competition, interchanging sets K and K̄ generates the kth components
of qk and pk̄, qk and pk̄, as functions of the strategic variables:

qk =
(1+(m−1)γ)Ak−γ

mP
i=1

Ai−(1+(m−2)γ)pk+γ
mP

i=1,i6=k
pi−(1−γ)

nP
ı̄=m+1

qı̄

(1−γ)(1+(m−1)γ) (8)

its inverse matrix is
1 + (n−m− 2)γ

(1− γ)(1 + (n−m− 1)γ)
and the off-diagonal element is

− γ

(1− γ)(1 + (n−m− 1)γ)
.

The invertibility of the matirx BKK is defined in the same way. This issue is discussed in
more detail in Szidarovszky and Yakowitz (1978).
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and

pk̄ =

(1+(m−1)γ)Ak̄−γ
mP
i=1

Ai−(1−γ)(1+mγ)qk̄+γ

mP
i=1

pi−(1−γ)
nP

ı̄=m+1,ı̄6=k̄
qı̄

(1+(m−1)γ) (9)

Firm k chooses optimal strategy to maximize its profit πk = (pk−ck)xk where
ck denotes the constant marginal cost. In a linear demand oligopoly, changes in
the production cost do not affect the optimal behavior of the firms qualitatively.
Thus the zero-cost assumption is usually adopted for the sake of analytical sim-
plicity, and we follow this tradition in the following discussions.

3 Review: Mixed Duopoly
Before proceeding to the general n-firm mixed oligopoly, we briefly review the
results on the behavioral comparison in a duopoly framework. To this end,
we take n = 2 and m = 1. Let firm 1 be quantity-adjusting and firm 2 price-
adjusting under CB competition. The usual procedure for solving the profit
maximization problems leads to the optimal behavior of the firms as follows:

qCB1 =
2A1 − γA2
4− 3γ2 , pCB1 = (1− γ2)qCB1 and πCB1 = (1− γ2)

¡
qCB1

¢2
and

pCB2 =
−γA1 + (2− γ2)A2

4− 3γ2 , qCB2 = pCB2 and πCB2 =
¡
qCB2

¢2
.

Subscript "CB" over variables indicates that the corresponding variables are
evaluated at a CB equilibrium.
Firm 2 is quantity-adjusting under BC competition and its optimal behavior

is dual to the optimal behavior of quantity-adjusting firm 1 under CB compe-
tition. We get its optimal behavior by replacing Ai by Aj , qi by qj and pi by
pj for i 6= j, i, j = 1, 2:

qBC2 =
−γA1 + 2A2
4− 3γ2 , pBC2 = (1− γ2)qBC2 and πBC2 = (1− γ2)

¡
qBC2

¢2
.

In the same way, duality transforms the optimal behavior of firm 2 under CB
competition into the optimal behavior of firm 1 under BC competition,

pBC1 =
(2− γ2)A1 − γA2

4− 3γ2 , qBC1 = pBC1 and πBC1 =
¡
qBC1

¢2
.

Let us compare the profits of firms 1 and 2 under CB competition with those
under BC competition. Ratios of the profits are

πCB1
πBC1

= (1− γ2)

µ
2− αγ

2− γ2 − αγ

¶2
and

πCB2
πBC2

=
1

1− γ2

µ
(2− γ2)α− γ

2α− γ

¶2
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where α is the ratio of A2 over A1. Differences between the numerator and the
denominator of the profit ratios are

(1− γ2)(2− αγ)2 − (2− γ2 − αγ)2 = −γ3(α2γ − 2α+ γ)

and ¡
(2− γ2)α− γ

¢2 − (1− γ2)(2α− γ)2 = γ3(α2γ − 2α+ γ).

The right hand sides of these two equations are negative and positive, respec-
tively, if γ < 0. Hence

πCB1 < πBC1 and πCB2 > πBC2 if γ < 0. (10)

Assume next that γ > 0. Then it can be shown that α2γ − 2α + γ < 0 under
the non-negativity conditions for the optimal prices and outputs,

2− γ2

γ
≥ α ≥ γ

2− γ2

implying that
πCB1 > πBC1 and πCB2 < πBC2 if γ > 0. (11)

The results (10) and (11) in the mixed duopoly agree with those obtained by
Singh and Vives (1984) and, as a benchmark for measuring firms’ profitability,
they can be summarized in the following way.

Theorem 1 In a mixed duopoly, a quantity-adjusting strategy is more profitable
than a price-adjusting strategy if the goods are substitutes whereas the price-
adjusting strategy is more profitable than the quantity-adjusting strategy if the
goods are complements.

4 Mixed N-Firm Oligopoly

4.1 CB Competition

We will begin our discussion on the n-firm mixed oligopoly by considering the
optimal behavior of the firms under CB competition. We first derive the best
responses and then obtain equilibrium outputs, prices and profits.

4.1.1 Best Responses

Since firm k ∈ K is quantity-adjusting, it chooses quantity of good k so as to
maximize its profit subject to (6), taking the other firms’ quantities and prices
as given. Solving the first-order condition of the profit maximizing problem
yields the best response

qk =
(1+(n−m−1)γ)Ak−γ

nP
ı̄=m+1

Aı̄+γ

nP
ı̄=m+1

pı̄−(1−γ)
mP
i6=k

qi

2(1−γ)(1+(n−m)γ) . (12)
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Using the simple fact that
Pm
i=1 qi = qk +

Pm
i6=k qi, the best response can be

rewritten as

qk =
(1+(n−m−1)γ)Ak−γ

nP
ı̄=m+1

Aı̄+γ

nP
ı̄=m+1

pı̄−(1−γ)
mP
i=1

qi

(1−γ)(2+(2(n−m)−1)γ) . (13)

The second-order condition (SOC) for the profit maximization is satisfied if

∂2πk
∂q2k

= −2(1− γ)(1 + (n−m)γ)
1 + (n−m− 1)γ < 0. (14)

If 0 < γ < 1, then the terms on the right hand side of (14) are positive and
thus this SOC is always satisfied. If −1 < γ < 0, the signs of 1 + (n−m)γ and
1+(n−m−1)γ are ambiguous and then the sign of the SOC is also ambiguous,
so we need additional conditions to fulfill the SOC. Since

1 + (n−m)γ < 1 + (n−m− 1)γ, (15)

the required condition is 1 + (n−m)γ > 0 or 1 + (n−m− 1)γ < 0.
Since firm k̄ ∈ K̄ is price-adjusting, it chooses a price of good k̄ so as to

maximize its profit subject to (7), taking the other firms’ quantities and prices
as given. Solving the first-order condition of the profit maximizing problem
yields the best response

pk̄ =

(1+(n−m−1)γ)Ak̄−γ
nP

ı̄=m+1

Aı̄+γ

nP̄
ı6=k̄

pı̄−(1−γ)
mP
i=1

qi

2(1+(n−m−2)γ) . (16)

Using the simple fact that
Pn

ı̄=m+1 pı̄ = pk̄ +
Pn
ı̄6=k̄ pı̄, the best response can be

rewritten as

pk̄ =
(1+(n−m−1)γ)Ak̄−γ

nP
ı̄=m+1

Aı̄+γ

nP
ı̄=m+1

pı̄−(1−γ)
mP
i=1

qi

2+(2(n−m)−3)γ . (17)

The SOC for the profit maximization is satisfied if

∂2πk̄
∂p2

k̄

= −2 (1 + (n−m− 2)γ)
(1− γ)(1 + (n−m− 1)γ) < 0.

If 0 < γ < 1, then this SOC is always satisfied. If −1 < γ < 0, then by the
same reason above, we need additional conditions to satisfy the SOC. Since

1 + (n−m− 1)γ < 1 + (n−m− 2)γ, (18)

the required condition is 1+(n−m−1)γ > 0 or 1+(n−m−2)γ < 0. From (15)
and (18), in order to fulfill the SOCs in the optimizing problems under both CB
and BC competitions, we assume the following:

Assumption 1. If γ < 0, either 1 + (n −m)γ > 0 or 1 + (n − m − 2)γ < 0
holds.
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4.1.2 CB Equilibrium

We will next show that there is a unique CB equilibrium. Adding (13) over all
quantity-adjusting firms and (17) over all price-adjusting firms gives

mP
k=1

qk =

(1 + (n−m− 1)γ)
mP
k=1

Ak −mγ
nP

k̄=m+1

Ak̄ +mγ
nP

k̄=m+1

pk̄

(1− γ)(2 + (2n−m− 1)γ)

and

nP
k̄=m+1

pk̄ =

(1− γ)
nP

k̄=m+1

Ak̄ − (n−m)(1− γ)γ
mP
i=1
qi

2 + (n−m− 3)γ .

If we introduce the notation,

Q = (1− γ)
mP
k=1

qk, P =
nP

k̄=m+1

pk̄, Bk =
mP
k=1

Ak and Bk̄ =
nP

k̄=m+1

Ak̄,

the above two equations can be rewritten as the simultaneous equations for Q
and P⎧⎨⎩ (2 + (2n−m− 1)γ)Q−mγP = (1 + (n−m− 1)γ)Bk −mγBk̄,

(n−m)γQ+ (2 + (n−m− 3)γ)P = (1− γ)Bk̄,
(19)

where we assume

∆CB = (2 + (2n−m− 1)γ)(2 + (n−m− 3)γ) +m(n−m)γ2 6= 0 (20)

to have a non-trivial solution. From the solution of (19) we obtain

P −Q =
1

∆CB
{−(1 + (n−m− 1)γ)(2 + (2(n−m)− 3)γ)Bk

+ [2 + (2n− 3)γ + (2n(m− 1)− (2m− 1)(m+ 1))γ2]Bk̄}.

P − Q is substituted into (13) and (17) to obtain the Cournot-Bertrand equi-
librium output and price,3

qCBk =
aCBk Ak−bCBk Bk − bCBk̄ Bk̄

∆CB(1− γ)(2 + (2(n−m)− 1)γ) (21)

and

pCBk̄ =
aCBk Ak−bCBk Bk − bCBk̄ Bk̄
∆CB(2 + (2(n−m)− 3)γ) (22)

3The CB output and price as well as the CB equilibrium values of another variables to be
obtained below in the n-firm oligopoly can be reduced to those in the duopoly obtained above
if we take n = 2 and m = 1.
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where
aCBk = ∆CB(1 + (n−m− 1)γ),

bCBk = γ(1 + (n−m− 1)γ)(2 + (2(n−m)− 3)γ)
and

bCBk̄ = γ(2 + (2(n−m)− 1)γ)(1 + ((n−m)− 2)γ).
From the perceived demand (6) of firm k and the best response (12), we can
obtain the price at which firm k sells its output as a function of its optimal
quantity,

pCBk =
(1− γ)(1 + (n−m)γ)
1 + (n−m− 1)γ qCBk . (23)

In the same way, solving (7) and (16) for qk̄ yields the output that firm k̄ sells
as a function of its optimal price

qCBk̄ =
1 + (n−m− 2)γ

(1− γ)(1 + (n−m− 1)γ)p
CB
k̄ . (24)

Using (23) and (24), the Cournot-Bertrand profits of firms k and k̄ are written
as

πCBk =
(1− γ)(1 + (n−m)γ)
1 + (n−m− 1)γ

¡
qCBk

¢2
(25)

and

πCBk̄ =
(1− γ)(1 + (n−m− 1)γ)

1 + (n−m− 2)γ
¡
qCBk̄

¢2
(26)

4.2 BC Competition

In BC competition, the strategies of firms are interchanged. Namely, the first
m firms in K are price-adjusting and the last (n−m) firms in K̄ are quantity-
adjusting. By duality, we can obtain the optimal behavior under BC competi-
tion from the optimal behavior under CB competition. In particular, the best
responses of firms k and k̄ are

pk =

(1 + (m− 1)γ)Ak − γ
mP
i=1
Ai + γ

Ã
mP

i=1, i6=k
pi − (1− γ)

nP
k̄=m+1

qk̄

!
2(1 + (m− 2)γ) (27)

and

qk̄ =

(1 + (m− 1)γ)Ak̄ − γ
mP
k=1

Ak + γ

Ã
mP
k=1

pk − (1− γ)
nP

ı̄=m+1, ı̄6=k̄
qı̄

!
2(1− γ)(1 +mγ)

(28)

It is easy to see that the second-order conditions for the profit maximizing
problems are always satisfied if the goods are substitutes. If the goods are
complements, then the following additional conditions are necessary.
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Assumption 2. If γ < 0, then either 1 +mγ > 0 or 1 + (m− 2)γ < 0.
Duality also gives BC equilibrium price and output from (21) and (22):

pBCk =
aBCk Ak − bBCk Bk − bBCk̄ Bk̄
∆BC(2 + (2m− 3)γ) (29)

and

qBCk̄ =
aBCk Ak̄ − bBCk Bk − bBCk̄ Ak̄
∆BC(1− γ)(2 + (2m− 1)γ) (30)

where
∆BC = (2 + (m− 3)γ)(2 + (n+m− 1)γ) +m(n−m)γ2

aBCk = ∆BC(1 + (m− 1)γ)
bBCk = γ(1 + (m− 2)γ)(2 + (2m− 1)γ)

and
bBCk̄ = γ(1 + (m− 1)γ)(2 + (2m− 3)γ)

Superscript "BC" over variables has the similar meaning as "CB."
Using the demands and the best responses, the output of the price-adjusting

firm k and the price of quantity-adjusting firm k̄ can be expressed as linear
functions of the strategic variables, pBCk and qBC

k̄
:

qBCk =
1 + (m− 2)γ

(1− γ)(1 + (m− 1)γ)p
BC
k (31)

and

pBCk̄ =
(1− γ)(1 +mγ)

1 + (m− 1)γ qBCk̄ (32)

From (31) and (32), the profits under BC competition have the forms

πBCk =
(1− γ)(1 + (m− 1)γ)

1 + (m− 2)γ
¡
qBCk

¢2
(33)

and

πBCk̄ =
(1− γ)(1 +mγ)

1 + (m− 1)γ
¡
qBCk

¢2
. (34)

5 Comparison of the optimal behavior
We compare the optimal behavior under CB competition with that under BC
competition to find out which competition is more profitable. It, however, re-
quires tedious calculations to make the comparison under general values of m
and n.To simplify the analysis, we focus on the special case in which the fol-
lowing condition is satisfied:

Assumption 3. n = 2m.

Notice that Assumptions 1 and 2 become identical under Assumption 3. In
the following analysis, we focus our attention to the optimal behavior of firm
k. This treatment will suffice for our purpose to show that Theorem 1 does not
necessarily hold in the general n-firm mixed oligopoly.
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5.1 Ratios of optimal values

Replacing n with 2m, we can verify that

∆CB = ∆BC = (2 + (3m− 1)γ)(2 + (m− 3)γ) +m2γ2,

bCBk = bBCk̄ = γ(1 + (m− 1)γ)(2 + (2m− 3)γ)
and

bCBk̄ = bBCk = γ(1 + (m− 2)γ)(2 + (2m− 1)γ).
Let ∆CB and ∆BC be denoted as ∆. Then we can also verify that

aCBk = aBCk = ∆(1 + (m− 1)γ).

To simplify the notation, we denote k by 1, k̄ by 2, aCBk and aBCk by a1, bCBk
and bBC

k̄
by b1 and bCBk̄ and bBCk by b2, respectively. With this new notation,

CB price (23) and BC price (29) are rewritten as

pCB1 =
(1 +mγ)mb2A1

∆(1 + (m− 1)γ)(2 + (2m− 1)γ)
¡
ϕCB(α1)− α2

¢
(35)

and

pBC1 =
mb1A1

∆(2 + (2m− 3)γ)
¡
ϕBC(α1)− α2

¢
(36)

where α1, respectively α2, denotes the ratio between the average quality offered
by the firms in K, respectively K̄, and the quality offered by firm k,

α1 =
B1/m

A1
, respectively α2 =

B2/m

A1
(37)

and

ϕCB(α1) =
a1
mb2

− b1
b2
α1 and ϕBC(α1) =

a1
mb1

− b2
b1
α1. (38)

Both ϕCB(α1) and ϕBC(α1) are linear in α1. If b1 6= b2, then they intersect once
at point (α∗1,α

∗
2) where

α∗1 = α∗2 =
a1

(b1 + b2)m
and ϕCB(α∗1) = ϕBC(α∗1) = α∗2. (39)

Taking the ratio of (35) over (36), then

pCB1
pBC1

− 1 = 1− ε2

ϕBC(α1)− α2

¡
α2 − ϕp(α1)

¢
(40)

where

ϕp(α1) =
ϕBC(α1)− ε2ϕCB(α1)

1− ε2
(41)

and

ε2 =
(1 +mγ)(1 + (m− 2)γ)

(1 + (m− 1)γ)2 .
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It is easy to confirm the following properties of ϕp(α1). The definition of ϕp(α1)
in (41) indicates that ϕp(α

∗
1) = α∗2, that is, the α2 = ϕp(α1) curve passes

through the point (α∗1,α
∗
2). For α1 = 0

ϕp(0) =
a1(b2 − ε2b1)

m(1− ε2)b1b2
=

a1
m(1− ε2)b1b2

γ3(1 + (m− 2)γ)
1 + (m− 1)γ (42)

and differentiating ϕp(α1) with respect to α1 gives

dϕp(α1)

dα1
=

ε2b21 − b22
(1− ε2)b1b2

=
2γ5(1 + (m− 2)γ)
(1− ε2)b1b2

, (43)

where the definitions of b1, b2 and ε2 are substituted into the denominators of
the middle expressions in (42) and (43) to obtain the last expressions.
With the new notation, CB quantity (21) and BC quantity (31) are rewritten

as

qCB1 =
mb2A1

∆(1− γ)(2 + (2m− 1)γ)
¡
ϕCB(α1)− α2

¢
and

qBC1 =
(1 + (m− 2)γ)mb1A1

∆(1− γ)(1 + (m− 1)γ)(2 + (2m− 3)γ)
¡
ϕBC(α1)− α2

¢
.

Taking the ratio of qCB1 over qBC1 , we have

qCB1
qBC1

− 1 = (b1 − b2)(b1 + b2)
(ϕBC(α1)− α2)b1b2

(α∗1 − α1). (44)

Finally, from the ratio of (25) over (33), we get

πCB1
πBC1

− 1 = (1 + ε)(1− ε)(ϕ+π (α1)− α2) (α2 − ϕ−π (α1))

(ϕBC(α1)− α2)2
. (45)

where

ϕ+π (α1) =
ϕBC(α1) + εϕCB(α1)

1 + ε
(46)

and

ϕ−π (α1) =
ϕBC(α1)− εϕCB(α1)

1− ε
(47)

with
dϕ−π (α1)

dα1
=

εb21 − b22
(1− ε2)b1b2

. (48)

Subtracting (43) from (48) gives

dϕ−π (α1)

dα1
−
dϕp(α1)

dα1
=

ε(b21 − b22)
(1− ε2)b1b2

. (49)
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5.2 γ > 0: the goods are substitutes

We first assume that the goods are substitutes (i.e., γ > 0). Let us start with
the price comparison. If γ > 0, then ∆ > 0, a1 > 0, b1 > 0, b2 > 0 and
b1 − b2 = γ3 > 0. It also implies that the first factor in each of (35) and (36) is
positive. The non-negativity conditions for the prices are

α2 ≤ ϕCB(α1) and α2 ≤ ϕBC(α1).

From (38) and (39), it can be examined that the boundary curves, α2 = ϕCB(α1)
and α2 = ϕBC(α1), slope downwards, have positive intercepts and intersect once
at point (α∗1,α

∗
2) with α∗1 = α∗2 > 0. We denote a feasible region of α1 and α2

by Ω which is defined by

Ω =
©
(α1,α2) | ϕCB(α1) ≥ α2, ϕ

BC(α1) ≥ α2, α1 > 0 and α2 > 0
ª
.

Since

ϕCB(α1)− ϕBC(α1) =
b21 − b22
b1b2

(α∗1 − α1) and b21 − b22 > 0,

the upper bound of Ω for α1 < α∗1 is the α2 = ϕBC(α1) curve and the upper
bound of Ω for α1 > α∗1 is the α2 = ϕCB(α1) curve. Relations (42) and (43)
indicate that the α2 = ϕp(α1) curve slopes upwards and has a positive intercept.
Since the numerator of the first factor in the right hand side of (40) is positive
as ε2 is positive and less than unity under γ > 04 and the denominator is
also positive by the non-negativity condition of pBC1 , we arrive at the following
condition for the price difference:

sign
£
pCB1 − pBC1

¤
= sign

£
α2 − ϕp(α1)

¤
. (50)

Hence we have the following results on the price difference:

Proposition 1. If γ > 0, then the α2 = ϕp(α1) curve divides the feasible
region Ω into two subregions: pCB1 > pBC1 in the subregion above the
curve and pCB1 < pBC1 below.

Before making output comparison, we notice that pCB1 ≥ 0 implies qCB1 ≥ 0
due to (23) and pBC1 > 0 implies qBC1 ≥ 0 due to (31). We then notice that
the first factor of (44) is positive. In consequence, we arrive at the following
condition for the quantity difference,

sign
£
qCB1 − qBC1

¤
= sign[α∗1 − α1]. (51)

The sign of the quantity difference is determined by the difference between α∗1
and α1, so we have the following result.

Proposition 2. If γ > 0, then qCB1 > qBC1 for α1 < α∗1 and q
CB
1 < qBC1 for

α1 > α∗1.

4 (1 +mγ)(1 + (m− 2)γ)− (1 + (m− 1)γ)2 = −γ2 < 0 implies ε2 < 1 and ε2 > 0 is clear.
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Finally we draw our attention to profit comparison. Returning to the right
hand side of (45), we see that its denominator is positive. The first two factors
of the numerator are positive under 0 < ε2 < 1. Since the non-negativity
conditions of the prices imply

ϕ+π (α1) =
ϕBC(α1) + εϕCB(α1)

1 + ε
≥ α2,

the third factor is also non-negative. Hence we have

sign
£
πCB1 − πBC1

¤
= sign

£
α2 − ϕ−π (α1)

¤
(52)

Equation (49) indicates that the slope of ϕ−π (α1) is steeper than the slope of
ϕp(α1). In Figure 1,

5 the division of the feasible region by the equal-profit curve
is depicted. From (52) we conclude the following result:

Theorem 2 If γ > 0, then the α2 = ϕ−π (α1) curve divides the feasible region
into two subregions: πCB1 > πBC1 in the darker-gray region above the curve in
Figure 1 and πCB1 < πBC1 in the lighter-gray region below.

Figure 1. γ = 0.975 and m = 3

In the mixed duopoly with product differentiation, as summarized in the first
half of Theorem 1, a quantity strategy is always more profitable than a price
strategy if the goods are substitutes. So the firm takes the quantity strategy in a
circumstance in which it can choose its behavioral strategy. However, Theorem
2 implies that this profit dominance of the quantity strategy with γ > 0 is
not necessarily true in the n-firm mixed oligopoly framework. In particular,
Propositions 1, 2 and Theorem 2 imply the following facts:

5 In Figure 1, m = 3 and γ = 0.975 are taken to visualize the difference between the two
curves, α1 = ϕCB(α1) and α2 = ϕBC(α1). Although it is analytically confirmed that the
two curves are different for any other combinations of parameters. The difference, however,
becomes small and invisible if a larger value of m and/or a smaller value of γ are taken.
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(i) the quantity strategy dominates the price strategy at point A of Figure 1
where αA1 < αA2 , that is, the quantity-adjusting strategy makes firm 1
produce more output, charge a higher price and earn more profit;

(ii) the price strategy dominates the quantity strategy at point B of Figure 1
where αB1 > αB2 , that is, the price-adjusting strategy makes firm 1 produce
more output, charge a higher price and earn more profit.

From (37), α1 > α2 (respectively, α1 < α2) means that the average quality
of the goods produced by the quantity-adjusting firms is higher (respectively,
lower) than the average quality of the goods produced by the price-adjusting
firms. If we observe the division of the feasible region in Figure 1 carefully, it
can be seen that α1 < α2 is a sufficient condition that the quantity-strategy
is more profitable than the price-strategy. Since ϕ−π (0) < 0,6 firm 1 produces
larger output, charges a lower price and earns more profit under CB competition
than under BC competition for α1 and α2 in the region standing between the
α2 = ϕ−π (α1) curve and the α2 = α1 curve in which α2 < α1. Hence α1 > α2 is a
necessary condition that the price strategy is more profitable than the quantity
strategy.

5.3 γ < 0: the goods are complements

We next assume that the goods are complements (i.e., γ < 0) and will compare
optimal prices, outputs and profits under CB competition with those under
BC competition. To fulfill the second-order condition, either 1 + mγ > 0 or
1 + (m− 2)γ < 0 is assumed by Assumption 1 or 2. We call the first condition
SOC1 and the second SOC2. In Figure 2 in which m is taken to be 20, SOC1
holds in the darker-gray region while SOC2 holds in the lighter-gray region.
The 1+mγ = 0 curve is the upper boundary of the darker-gray region whereas
the 1 + (m − 2)γ = 0 curve is the lower boundary of the ligther-gray region.
The dashed curves are the ∆ = 0 loci. ∆ < 0 in the region between the dashed
curves and ∆ > 0 otherwise. We refer to four points denoted by A, a, B and b
shortly after. We will start with considering the behavioral comparisons under
SOC1 and then proceed to those under SOC2.

6By definition

ϕ−π (0) =
a1(b2 − εb1)

m(1− ε)b1b2
.

In the case of γ > 0, ε2b21 − b22 = (εb1 − b2)(εb1 + b2) > 0 where the inequality is due to (43).
This inequality with εb1 + b2 > 0 leads to εb1 − b2 > 0 implying ϕ−π (0) < 0.
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Figure 2 Regions of SOC1 and SOC2

5.3.1 The case of SOC1

If γ < 0 and 1+mγ > 0, then 1+(m−1)γ > 0, 1+(m−2)γ > 0, 2+(2m−1)γ > 0
and 2 + (2m− 3)γ > 0 which, in turn, imply that b1 < 0, b2 < 0 and b1 − b2 =
γ3 < 0. Although ∆a1 > 0, the sign of ∆ is undetermined in general and so is
the sign of a1. We identity two cases: one is the case where ∆ is positive and
the other is the case where ∆ is negative.7

If ∆ > 0 is further assumed, then a1 > 0. Since the first factors in (35) and
(36) are negative, the non-negativity conditions of the prices are given by

ϕCB(α1)− α2 ≤ 0 and ϕBC(α1)− α2 ≤ 0.

a1 > 0 implies that α∗1 < 0 and α∗2 < 0. It follows that the prices and outputs
are positive for α1 > 0 and α2 > 0. Returning to (40), we see that its first factor
in the right hand side is negative. Hence, the price difference is determined by
the following condition,

sign
£
pCB1 − pBC1

¤
= sign

£
ϕp(α1)− α2

¤
, (53)

where ϕp(α1) slopes downward by (43). Consequently ϕp(α1) < 0 for all α1 > 0
and hence pCB1 < pBC1 always. Retuning to (44), we notice that its first factor in
the right hand side is negative where b1− b2 < 0. Hence the quantity difference
is determined by the following condition,

sign[qCB1 − qBC1 ] = sign[α1 − α∗1] (54)

where α1 − α∗1 > 0 forα1 > 0. We therefore have the following result:

7The third case of ∆ = 0 is eliminated from considerations due to (20) with n = 2m.
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Proposition 3. If γ < 0, 1 + mγ > 0 and ∆ > 0, then pCB1 < pBC1 and
qCB1 > qBC1 .

We now return to (45) and examine the profit difference. It can be verified
that 0 < ε2 < 1 under γ < 0 and 1+mγ > 0. The first and second factors of the
numerator of (45) are positive. Since ϕ+π (α1) is the weighted average of ϕ

CB(α1)
and ϕBC(α1), the non-negativity of the prices implies that ϕ+π (α1) < α2, so the
third factor is negative. Hence the profit difference is determined by the sign of
the fourth factor

sign
£
πCB1 − πBC1

¤
= sign

£
ϕ−π (α1)− α2

¤
(55)

where (48) implies that the slope of ϕ−π (α1) is ambiguous. We take γ = −0.1
and m = 6, which correspond to the point A in Figure 2, and make the equal-
profit curve, α2 = ϕ−π (α1), be positive sloping, as shown in Figure 3. It can be
seen that the first quadrant of (α1,α2) is divided into two parts: πCB1 < πBC1
in the lighter-gray region above the curve and the inequality is reversed in the
darker-gray region below. If the α2 = ϕ−π (α1) curve slopes downwards, it does
not intersect the first quadrant, which graphically means the disappearance of
the darker-gray region from Figure 3 and economically means that πCB1 < πBC1
always, which is the same as the latter half of Theorem 1. Summing up, we
have the following results:

Theorem 3 Assume that γ < 0, 1 +mγ > 0 and ∆ > 0. (i) If
√
εb1 − b2 < 0,

then the positive-sloping α2 = ϕ−π (α1) curve divides the first quadrant of the
(α1,α2) space into two parts: πCB1 < πBC1 in the divided region above the curve
and πCB1 > πBC1 below. (2) If

√
εb1−b2 > 0, then the α2 = ϕ−π (α1) curve slopes

downwards and πCB1 < πBC1 always holds in the first quadrant.

When we graphically show the profit comparison, the colors are selected
in such a way that darker-gray means πCB1 > πBC1 and lighter-gray means
πCB1 < πBC1 . The second half of Theorem 1 indicates that in a mixed duopoly,
a price strategy is always more profitable than a quantity strategy if the goods
are complements. Theorem 3 implies that this profit dominance with γ < 0
in a duopoly framework is not necessarily true in the n-firm mixed oligopoly
framework if ε is large enough to make εb1−b2 < 0 whereas the profit dominance
is still true if ε is small enough to make εb1 − b2 > 0.
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Figure 3. 1 +mγ > 0 and ∆ > 0 where γ = −0.1 and m = 6.

We now assume ∆ < 0 that leads to a1 < 0. Since the first factors in (35)
and (36) are positive, the non-negativity conditions of the prices are

ϕCB(α1)− α2 ≥ 0 and ϕBC(α1)− α2 ≥ 0

which is the same as the conditions in the case in which the goods are substitutes.
In the same way, we obtain

sign[pCB1 − pBC1 ] = sign[α2 − ϕp(α1)]

sign[qCB1 − qBC1 ] = sign[α∗1 − α1]

and
sign[πCB1 − πBC1 ] = sign[α2 − ϕ−π (α1)],

which are the same as (50), (51) and (52). There are, however, differences: The
equal-price curve, ϕp(α1) = α2, is negative sloping and the slope of the profit-
equal curve ϕ−π (α1) = α2, can be of either sign. The division of the feasible
region is depicted in Figure 4 in which we take point a (i.e., γ = −0.095 and
m = 10). Despite of these differences, the main results is the same as Theorem
2, and summarized as follows.

Theorem 4 Assume that γ < 0, 1+mγ > 0 and ∆ < 0, then the α2 = ϕ−π (α1)
curve divides the feasible region Ω into two parts: πCB1 > πBC1 in the divided
region above the curve and πCB1 < πBC1 below.
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Figure 4. 1 +mγ > 0 and ∆ < 0 where γ = −0.095 and m = 10

5.3.2 The case of SOC2

If γ < 0 and 1 + (m− 2)γ < 0, then 1 + (m− 1)γ < 0, 2 + (2m− 1)γ < 0 and
2+(2m−3)γ < 0, which, in turn, imply that b1 < 0, b2 < 0 and b1−b2 = γ3 < 0.
Although ∆α1 < 0, the sign of ∆ is undetermined and so is the sign of α1. We
identity two cases as in the case of SOC1: one is the case where ∆ is positive
and the other is the case where ∆ is negative.
Let us suppose that ∆ > 0, then a1 < 0 which leads to α∗1 > 0 and α∗2 > 0.

(35) and (36) imply that the non-negativity conditions for the prices and outputs
are

ϕCB(α1) ≥ α2 andϕBC(α1) ≥ α2.

The feasible region for the price and outputs are Ω. ϕp(α1) slopes upwards and
ϕ+π (α1) > α2. It is clear that ϕ−π (α1) slopes upwards and is steeper than ϕp(α1).
From (40), (44) and (45), we have

sign[pCB1 − pBC1 ] = sign[α2 − ϕp(α1)],

sign[qCB1 − qBC1 ] = sign[α∗1 − α1]

and
sign[πCB1 − πBC1 ] = sign[α2 − ϕ−π (α1)].

These three conditions are the same as (50), (51) and (52), respectively. In
consequence the results obtained here are the same as the results obtained in
the case of γ > 0. The profit differences are summarized as follows:

Theorem 5 If γ < 0, 1 + (m − 2)γ < 0 and ∆ > 0, then the α2 = ϕ−π (α1)
curve divides the feasible region Ω into two parts: πCB1 > πBC1 in the divided
region above the curve and πCB1 < πBC1 below.
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We take γ = −0.6 and m = 6, which correspond to the point B in Figure
2 and depict the division of the feasible region Ω in Figure 4. The similarities
between Figure 1 and Figure 5 are clear. πCB1 > πBC1 in the darker-gray region
and πCB1 < πBC1 in the lighter-gray region. Hence the profit dominance with
γ < 0 obtained in the duopoly framework is not true in the n-firm oligopoly
framework.

Figure 5. 1 + (m− 2)γ < 0 and ∆ > 0 where γ = −0.6 and m = 6

In the case of negative ∆, a1 > 0 which leads to α∗1 < 0 and α∗2 < 0. The
non-negativity conditions for the prices and outputs are

ϕCB(α1) ≤ α2 andϕBC(α1) ≤ α2.

The first quadrant of the (α∗1,α
∗
2) space is the feasible region for the price and

outputs. ϕp(α1) slopes upwards. ϕ+π (α1) < α2 for α1 > 0 and α2 > 0. It is
clear that ϕ−π (α1) slopes upwards and is steeper than ϕp(α1). From (40), (44)
and (45), we have

sign[pCB1 − pBC1 ] = sign[ϕp(α1)− α2],

sign[qCB1 − qBC1 ] = sign[α1 − α∗1]

and
sign[πCB1 − πBC1 ] = sign[ϕ−π (α1)− α2].

The three conditions are the same as (53), (54) and (55), respectively. The re-
sults obtained under SOC1, ∆ > 0 and

√
εb1−b2 < 0 are the same as the results

obtained under SOC2 and ∆ < 0. The profit difference can be summarized as
follows:

Theorem 6 If γ < 0, 1+(m−2)γ < 0 and ∆ < 0, then the α2 = ϕ−π (α1) locus
divides the feasible region R+ into two parts: πCB1 < πBC1 in the divided region
above the locus and πCB1 > πBC1 below.
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We take γ = −0.25 and m = 6, which correspond to point b in Figure 2 and
depict the division of the feasible region in Figure 4. As far as profit comparison
is our concern, the similarity between Figures 3 and 5 is clear: πCB1 < πBC1 in
the lighter-gray region and πCB1 > πBC1 in the darker-gray region.

Figure 6. 1 + (m− 2)γ < 0 and ∆ < 0 where γ = −0.25 and m = 6.

6 Concluding Remark
In a mixed duopoly with product differentiation, Theorem 1 indicates that a
quantity-strategy is more profitable than a price-strategy if the goods are sub-
stitutes and the profit dominance is reversed if the goods are complements. Our
main aim is to reconsider whether these clear-cut results still hold in a general
(n-firm) oligopoly framework or not. Theorems 2, 3, 4, 5 and 6 lead us to the
conclusion that the results obtained in the duopoly framework are no longer
valid in general oligopoly framework. If the firms can precommit to quantity or
price strategy, the dominant strategy depends on the average quality ratio of
the goods produced by the quantity-adjusting firms and the goods produced by
the price-adjusting firms.
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