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Abstract

We call the intercept of the price function with the vertical axis the
maximum price and the slope of the price function the marginal price.
In this paper it is assumed that a monopolistic �rm has full information
about the marginal price and its own cost function but is uncertain on the
maximum price. However, by repeated interaction with the market, the
obtained price observations give a basis for an adaptive learning process
of the maximum price. It is also assumed that the price observations
have �xed delays, so the learning process can be described by a delayed
di¤erential equation. In the cases of one or two delays, the asymptotic
behavior of the resulting dynamic process is examined, stability conditions
are derived. Three main results are demonstrated in the two delay learning
process. First, it is possible to stabilize the equilibrium which is unstable
in the one delay model. Second, complex dynamics involving chaos, which
is impossible in the one delay model, can emerge. Third, alternations of
stability and instability (i.e., stability switches) occur repeatedly.
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1 Introduction

This paper uses the familiar monopoly model in which there is only one �rm
having linear price and cost functions. Implicit in the text-book approach is
an assumption of complete and instantaneous information availability on price
and cost functions. In consequence, the textbook-monopoly can �nd its opti-
mal choices of price and quantity to maximize pro�t with one shot. Thus the
traditional monopoly model is static in nature. It is now well-known that the
assumption of such a rational monopoly is questionable and unrealistic in real
economies, since there are always uncertainty and a time delay in collecting
information and determining optimal responses, and in addition, function rela-
tions such as the market price function cannot be determined exactly based on
theoretical consideration and observed data. Getting closer to the real world
and improving the monopoly theory, we replace this extreme but convenient
assumption with the more plausible one. Indeed, the monopolistic �rm is as-
sumed, �rst, to have only limited knowledge on the price function and, second,
to obtain it with time delay. As a natural consequence of these alternations, the
�rm gropes for its optimal choice by using delay data obtained through market
experiences. The modi�ed monopoly model becomes dynamic in nature.
In the recent literature, it has been demonstrated that a boundedly rational

monopoly may exhibit simple as well as complex dynamic behavior. Nyarko
(1991) solves the pro�t maximizing problems without knowing the slope and
intercept of a linear demand and shows that using Bayesian updating leads to
cyclic actions and beliefs if the market demand is mis-speci�ed. Furthermore,
in the framework with discrete-time scale, Puu (1995) shows that the bound-
edly rational monopolist behaves in an erratic way under cubic demand with
a re�ection point. In the similar setting, Naimzada and Ricchiuti (2008) rep-
resent that complex dynamics can arise even if cubic demand does not have a
re�ection point. Naimzada (2012) exhibits that delay monopoly dynamics can
be described by the well-known logistic equation when the �rm takes a special
learning scheme. More recently, Matsumoto and Szidarovszky (2014a) demon-
strate that the monopoly equilibrium undergoes to complex dynamics through
either a period-doubling or a Neimark-Sacker bifurcation.
This paper considers monopoly dynamics in continuous time scale and presents

a new characterization of a monopoly�s learning process under a limited knowl-
edge of the market demand. It is a continuation of Matsumoto and Szidarovszky
(2012) (MS henceforth) where the monopolist does not know the price function
and �xed time delays are introduced into the output adjustment process based
on the gradient of the marginal expected pro�t. It also aims to complement
Matsumoto and Szidarovszky (2014b,c) where uncertain delays are modeled by
continuously distributed time delays when the �rm wants to react to average
past information instead of sudden market changes.1 Under a circumstance in

1There are two di¤erent ways to model time delays in continuous-time scale: �xed time
delay and continuously distributed time delay (�xed delay and continuous delay henceforth).
The choice of the type of delay results in the use of di¤erent analytical tools. In the cases of
�xed delay, dynamics is described by a delay di¤erential equation whose characteristic equation
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which price is uncertain and the price information is delayed, this paper exam-
ines the learning scheme in the cases of a single delay and two delays. It is an
extended version of MS and thus has similarities and dissimilarities to MS. Its
main purpose to show that cyclic and erratic behavior can emerge from quite
simple economic structures when uncertainty, information delays and behav-
ioral nonlinearities are present is the same. Gradient dynamics without optimal
behavior in MS is replaced with the learning scheme with pro�t maximizing
behavior. In spite of this behavioral di¤erence, derived mathematical equations
and their solutions are the same. However the ways to arrive at the solutions are
very di¤erent; an elementary method applicable only to the very special form of
the mathematics equation is used in MS while we apply a more general method
developed by Gu et al. (2005). As a result, the stability/instability conditions
are simpli�ed and clari�ed. Since economics behind the mathematical equations
are di¤erent, the results to be obtained have di¤erent economic implications.
This paper develops as follows. The basic mathematical model is formulated

and a single delay equation is examined in Section 2. In Section 3, it is assumed
that the �rm formulates its price expectation based on two delayed observations
by using a delay feedback. Complete stability analysis is given, the stability
regions are determined and illustrated. The occurrence of Hopf bifurcation is
shown when one of the two delays is selected as a bifurcation parameter. The
last section o¤ers conclusions and further research directions.

2 The Basic Model

Consider a single product monopolist that sells its product to a homogeneous
market. Let q denote the output of the �rm, p(q) = a � bq the price function
and C(q) = cq the cost function.2 Since p(0) = a and j@p(q)=@qj = b; we call a
the maximum price and b the marginal price. There are many ways to introduce
uncertainty into this framework. In this study, it is assumed that the �rm knows
the marginal price but does not know the maximum price. In consequence it
has only an estimate of it, which is denoted by ae. So the �rm believes that its
pro�t is

�e = (ae � bq)q � cq
and its best response is

qe =
ae � c
2b

:

is a mixed polynomial-exponential equation with in�nitely many eigenvalues. Bellman and
Cooke (1963) o¤er methodology of complete stability analysis in such models. On the other
hand, in the cases of continuous delay, Volterra-type integro-di¤erential equations are used
to model the dynamics. The theory of continuous delays with applications in population
dynamics is o¤ered by Cushing (1977). Since Invernizzi and Medio (1991) have introduced
continuous delays into mathematical economics, its methodology is used in analyzing many
economic dynamic models.

2Linear functions are assumed only for the sake of simplicity. We can obtain a similar
learning process to be de�ned even if both functions are nonlinear. It is also assumed for
the sake of simplicity that the �rm has perfect knowledge of production technology (i.e., cost
function).
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Further, the �rm expects the market price to be

pe = ae � bqe = ae + c

2
: (1)

However, the actual market price is determined by the real price function

pa = a� bqe = 2a� ae + c
2

: (2)

Using these price data, the �rm updates its estimate. The simplest way for
adjusting the estimate is the following. If the actual price is higher than the
expected price, then the �rm shifts its believed price function by increasing the
value of ae; and if the actual price is the smaller, then the �rm decreases the
value of ae: If the two prices are the same, then the �rm wants to keep its
estimate of the maximum price. This adjustment or learning process can be
modeled by the di¤erential equation

_ae(t) = k [pa(t)� pe(t)] ;

where k > 0 is the speed of adjustment and t denotes time. Substituting relations
(1) and (2) reduces the adjustment equation to a linear di¤erential equation with
respect to ae as

_ae(t) = k [a� ae(t)] : (3)

In another possible learning process, the �rm revises the estimate in such a way
that the growth rate of the estimate is proportional to the di¤erence between
the expected and actual prices. Replacing _ae(t) in equation (3) with _ae(t)=ae(t)
yields a di¤erent form of the adjustment process

_ae(t)

ae(t)
= k [a� ae(t)]

or multiplying both sides by ae(t) generates the logistic model

_ae(t) = kae(t) [a� ae(t)] : (4)

This equation is proposed by Verhust (1845) and has been extensively studied,
especially as a biological model of single species dynamics in the theoretical
biology. It has already been shown that the positive equilibrium ae(t) = a of
equation (4) is globally stable. We adopt this nonlinear equation as the basic
learning process henceforth.3

If there is a time delay � in the estimated price, then we can rewrite the
estimated price and market price at time t based on information available at
time t� � as

pe(t; t� �) = ae(t� �)� bqe(t; t� �)
3The linear approximation of nonlinear equation (4) to be considered below is essentially

equivalent to the linear equation (3).
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and
pa(t; t� �) = a� bqe(t; t� �);

where qe(t; t� �) is the delay best reply determined at time t depending on the
expected maximum price at time t� � ,

qe(t; t� �) = ae(t� �)� c
2b

:

Then equation (4) have to be modi�ed as

_ae(t) = kae(t) [a� ae(t� �)] (5)

which is the delay logistic equation. It has two equilibria as well, a� = 0 and
a� = a > 0: If F (ae(t); ae(t � �)) denotes the right hand side of equation (5),
then the linear approximation in a neighborhood of an equilibrium (a�; a�) is

_ae�(t) =
@F

@ae(t)

����
(a�; a�)

ae�(t) +
@F

@ae(t� �)

����
(a�; a�)

ae�(t� �);

where ae�(t) = a
e(t)�a. Small perturbations from the trivial equilibrium satisfy

the linear equation,
_ae�(t) = aka

e
�(t)

which implies that a� = 0 is locally unstable with exponential growth. We
thus draw our attention only to the positive equilibrium The linearized version
of equation (5) around the positive equilibrium is written as a linear delay
di¤erential equation,

_ae�(t) = �akae�(t� �): (6)

Introducing the new variable z(t) = ae�(t) and the new parameter � = ak > 0
reduce equation (6) to

_z(t) + �z(t� �) = 0: (7)

Apparently z(t) = 0 is the only equilibrium of the modi�ed delay equation (7).
If there is no delay (i.e., � = 0), then equation (7) becomes an ordinary

di¤erential equation with characteristic polynomial � + �: So the only eigen-
value is negative implying the local asymptotic stability of the zero solution of
equation (7). In consequence, the positive solution of equation (5) corresponds
to the true value of the maximum price a� = a and the monopolist can learn
the true demand function through a comparison with the real data.4 We expect
asymptotical stability for su¢ ciently small positive values of � by continuity of
variables with respect to � . However, as the length of delay changes largely, the
stability of the zero solution may also change. Such phenomenon is referred to
as stability switch. The essentially same equation as equation (7) is fully studied
in MS. Applying their Theorem 1, we obtain the following results concerning
dynamics of equation (5):

4This scheme of learning is now well-known. See, for example, Bischi, et al. (2010).
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(R1) There is a critical value of � ;

�� =
�

2ak
: (8)

(R2) The positive equilibrium a� = a is locally asymptotically stable for � <
��; loses stability at � = �� and bifurcates to a limit cycle through Hopf
bifurcation for � > ��.

(R3) It is numerically con�rmed that the Hopf bifurcation is supercritical.5

These results imply that the stability switch occurs at � = �� and a desta-
bilized trajectory does not diverges globally but keeps �uctuating around the
positive equilibrium. According to equation (8), the critical value �� becomes
smaller as a and/or k increases. Since a is the maximum demand and k is the
adjustment speed, larger demand and a high adjustment speed can be desta-
bilizing factors for the positive equilibrium. Taking a = 1 and k = 1 that
leads to �� = �=2 ' 1:57, we perform simulations. Figure 1(A) is a bifurcation
diagram with respect to � 2 [1:4; 2] and numerically con�rms the �rst two
analytical results above. Figure 1(B) illustrates a supercritical Hopf cycle for
�a = 1:8 under which the Hopf cycle has the maximum aeM ' 2:3 and the min-
imum aem ' 0:197:6 These two values are depicted as black dots on the upper
and lower branches of the bifurcation diagram and also on the maximum and
minimum points of the limit cycle.

(A) Bifurcation diagram (B) Hopf cycle

Figure 1. Dynamics of delay logistic equation (5)

5 It may be possible to analytically show this by applying the normal form theory.
6These values are numerically determined by the rule of thumb.

6



3 Delay Feedback

Under the logistic dynamic process, learning takes place only for � < �� and
becomes unsuccessful for � > �� under which cyclic behavior occurs. If the mo-
nopolist behaves along a periodic orbit, then he may realize that his expectations
are systematically wrong. Under such circumstance, although he is assumed to
be boundedly rational, the monopolist may change the way he forms expecta-
tions somehow. One possible and simply way is to use the information obtained
in the past two di¤erent time, t � �1 and t � �2.7 It is assumed that �1 < �2
and the expectations formed at time t� �1 (i.e., ae(t� �1)) are the most recent
information available to the monopolist at time t due to the bounded rational-
ity. The expectations formed at time t � �2 (i.e., ae(t � �2)) are also known.
The di¤erence between ae(t� �1) and ae(t� �2) is referred to as delay feedback.
The monopolist employs a di¤erent learning mechanism with taking account
this delay feedback into

_ae(t)

ae(t)
= k [a� ae(t� �1)] + � [ae(t� �1)� ae(t� �2)] ;

where � is a coe¢ cient of the feedback. The growth rate of the expectation
adjustment is determined by two factors, the observed price di¤erence and the
delay feedback. This equation is equivalently written as

_ae(t) = kae(t) [a� !ae(t� �1)� (1� !)ae(t� �2)] ; (9)

where the coe¢ cient ! is de�ned by

! = 1� �
k
:

Notice that equation (9) is reduced to equation (5) if � = 0 or � = k: Thus
� 6= 0 and � 6= k are assumed. If k > � > 0; then 1 > ! > 0 under which
the monopolist uses interpolation between the observations. Further, he puts
more weight on the expectation at time t � �1 if ! > 1=2 and time t � �2 if
! < 1=2. If � < 0 or � > k; then ! > 1 or ! < 0 under which the monopolist
uses extrapolation to predict the current price. It is natural to suppose that the
monopolist uses interpolation and the more recent observation is more valuable
(i.e., 1 > ! � 1=2), we make the following assumption:

Assumption 1 � > 0 and k � 2�.

Equation (9) is the logistic equation with two delays and has two equilib-
ria, the zero equilibrium, a� = 0 and the positive equilibrium, a� = a > 0;
both of which are equilibria of the logistic equation with one delay (5). Let

7 If the monopolist is supposed to use all the past data up to time �1, it is appropriate to
introduce continuously distributed time delay. See Matsumoto and Szidarovszky (2014 b, c)
for detail.
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G(ae(t); ae(t� �1); ae(t� �2)) be the right hand side of equation (9). The linear
approximation in a neighborhood of the equilibrium a� = (a�; a�; a�) is

_ae�(t) =
@G

@ae(t)

����
a�
ae�(t)+

@G

@ae(t� �1)

����
a�
ae�(t� �1)+

@G

@ae(t� �2)

����
a�
ae�(t� �2):

Similarly to the one delay logistic equation, it can be shown that the zero
equilibrium is locally unstable. On the other hand, the linear approximation in
a neighborhood of the positive equilibrium a� = (a; a; a) is

_ae�(t) = � [�!ae�(t� �1)� (1� !)ae�(t� �2)] (10)

where we can remember � = ak.
To study the change of stability of equation (10) as the delays �1 and �2

vary, we follow the method developed by Gu et al. (2005).8 If ae�(t) = e
�tu; then

the corresponding characteristic equation is

�+ �!e���1 + �(1� !)e���2 = 0: (11)

We introduce the following functions,

p0(�) = �; p1(�) = �! and p2(�) = �(1� !)

and con�ne our analysis to the case where the following four conditions are
satis�ed:

(I) deg[p0(�)] � max fdeg [p1(�)] ;deg [p2(�)]g :

(II) p0(0) + p1(0) + p2(0) 6= 0:

(III) The polynomials p0(�); p1(�) and p2(�) do not have any common roots.

(IV) lim�!1

�����p1(�)p0(�)

����+ ����p1(�)p0(�)

����� < 1:
Equation (11) satis�es these conditions. Since deg[p0(�)] = 1 and deg [p1(�)] =

deg [p2(�)] = 0;
9 condition (I) is satis�ed. If this condition is violated, then the

equilibrium cannot be stable for any positive delays (see, for example, Bellman
and Cooke, 1963). Condition (II) is clearly satis�ed as p0(0) + p1(0) + p2(0) =
k 6= 0. It prevents � = 0 being a solution of equation (11) for which no as-
ymptotical stability is possible. Condition (III) is natural. pi(�) for i = 0; 1; 2
apparently have no common roots. If polynomials have a common root �0 such
that qi(�) = (�� �0)pi(�) for i = 0; 1; 2, then equation (11) can be factored as

(�� �0)(q0(�) + q1(�)e���1 + q2(�)e���2) = 0
8 In Matsumoto and Szidarovszky (2012), an elementary method is used to solve equation

(10). It is applied only to a special form of the two delay equation. On the other hand, Gu�s
method is highly advanced and systematic. It is applicable to a more general form. In our
special case, both lead us to the same solution in di¤erent forms.

9"deg" means the degree of polynomial.
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where qi(�) for i = 0; 1; 2 now satisfy condition (III). Since equation (10) is a
delay di¤erential equation of retarded type, the limit in our case is zero and thus
condition (IV) is satis�ed. Notice that condition (IV) is a restriction of condition
(I). If condition (I) is violated, then the limit becomes in�nity. Condition (IV) is
a necessary condition for the continuity condition which states that if the delays
(�1; �2) continuously vary within the �rst quadrant of R2, then the number of
zero of equation

p0(�) + p1(�)e
���1 + p2(�)e

���2 = 0

with positive real parts can change only when a zero appears on or crosses the
imaginary axis. This fact is the basis for identifying the stability switch curve
with zeros on the imaginary axis.
We de�ne

a1(�) =
p1(�)

p0(�)
=
�!

�
and a2(�) =

p2(�)

p0(�)
=
�(1� !)

�

and then rewrite equation (11) as

1 + a1(�)e
���1 + a2(�)e

���2 = 0 (12)

We examine the stability switch of the positive of the non-trivial solution of
dynamic equation (10) as the delays (�1; �2) vary. The modi�ed characteristic
equation (12) must have a pair of pure conjugate imaginary roots at the critical
delays for which the stability switch occurs. So let � = i� with � > 0 which is
then substituted into equation (12) to obtain

1 + a1(i�)e
�i��1 + a2(i�)e

�i��2 = 0 (13)

where

a1(i�) = �i
�!

�
and a2(i�) = �i

�(1� !)
�

: (14)

The absolute values of these pure imaginary roots are

ja1(i�)j =
�!

�
and ja2(i�)j =

�(1� !)
�

(15)

and the arguments are

arg [a1(i�)] =
3�

2
and arg [a2(i�)] =

3�

2
: (16)

We can now consider the three terms in the left hand side of equation (13) as
three vectors in the complex plane with the magnitudes 1; ja1(i�)j and ja2(i�)j.
The right hand side is zero, which implies that if we put these vectors head
to tail, then they form a triangle as illustrated in Figure 2. Since the sum of
lengths of the two line segments is not shorter than that of the remaining line
segment in a triangle, these absolute values satisfy the following three inequality
conditions

1 � ja1(i�)j+ ja2(i�)j () � � �;
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ja1(i�)j � 1 + ja2(i�)j () �(2! � 1) � �

and
ja2(i�)j � 1 + ja1(i�)j () �� � 0 � �(2! � 1):

The third condition is always ful�lled under Assumption 1. So the �rst and
second conditions determine the feasible domain of �,

�(2! � 1) � � � �: (17)

Let �1 and �2 be the right hand and left hand internal angles of the triangle in
Figure 2. They can be calculated by the law of cosine as

�1(�) = cos
�1
�
1 + ja1(i�)j � ja2(i�)j

2 ja1(i�)j

�
= cos�1

�
�2 + 2�2! � �2

2��!

�
(18)

and

�2(�) = cos
�1
�
1 + ja2(i�)j � ja1(i�)j

2 ja2(i�)j

�
= cos�1

�
�2 � 2�2! + �2
2��(1� !)

�
: (19)

Figure 2. Triangle formed by 1; ja1(i�)j and
ja2(i�)j

The arguments in (16) and the internal angles just obtained in (18) and (19)
satisfy the following relations

��1 = � �
�
arg

�
a1(i�)e

�i��1
�
+ 2m�

	
and

��2 = � �
�
arg

�
a2(i�)e

�i��2
�
+ 2n�

	
:
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Using the formula arg
�
a2(i�)e

�i��2
�
= arg

�
a2(i�)] + arg[e

�i��2
�
and (16), we

can solve these equations for the delays �1 and �2 and obtain

�1 =
1

�

�
3�

2
+ (2m� 1)� � �1(�)

�
;

and

�2 =
1

�

�
3�

2
+ (2n� 1)� � �2(�)

�
:

We then have two sets of curves in the �rst quadrant of the region of (�1; �2) and
the characteristic equation has a pair of pure imaginary roots on these curves:

C+(m;n):

8>>>><>>>>:
�+1 =

1

�

�
3�

2
+ (2m� 1)� + �1(�)

�

�+2 =
1

�

�
3�

2
+ (2n� 1)� � �2(�)

� (20)

where

m = m0; m0 + 1; m0 + 2; ::: such that �
+
1 � 0;

n = n0; n0 + 1; n0 + 2; ::: such that �
+
2 � 0:

and

C�(m;n):

8>>>><>>>>:
��1 =

1

�

�
3�

2
+ (2m� 1)� � �1(�)

�

��2 =
1

�

�
3�

2
+ (2n� 1)� + �2(�)

� (21)

where

m = �m0; �m0 + 1; �m0 + 2; ::: such that �
�
1 � 0;

n = �n0; �n0 + 1; �n0 + 2; ::: such that �
�
2 � 0:

Notice that m0 and �m0 are the smallest positive integers so that �1 � 0 and
while n0 and �n0 are the smallest positive integer so that �2 � 0: Given (m;n),
C�(m;n) constructs a segment of (��1 ; �

�
2 ) for � 2 [�(2!�1); �]: The next result

shows that these segments are smoothly connected as one continuous curve. All
the proofs of the theorems are collectively given in the Appendix.

Theorem 1 With �xed value ofm; the segments of C+(m;n) and C�(m;n) form
a continuous curve as n increases.
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Figure 3 numerically con�rms Theorem 1 and illustrates the segments C+(m;n)
and C�(m;n) with the value of � varying from �(2! � 1) to � for n = 0; 1; 2
and m = 0. The parameter values are ! = 0:8; a = 1 and k = 1; the last
two of which imply � = 1. The positive sloping line in the lower part of Fig-
ure 3 is the 45 degree line10 so that the condition �1 < �2 is violated in the
gray color region, which will be eliminated from further considerations. The
red curves are C+(m;n) and the blue curves are C�(m;n). The green dots
are the initial points of the segments and the black dots are the end points.
Notice that two curves are connected at these points, in particular, for the ini-
tial points, I+(0; n + 1) = I�(0; n) at for n = 0; 1 and for the end points,
E+(0; n) = E�(0; n) for n = 0; 1; 2: The red and blue curves shift upward when
n increases (i.e., increments of the initial and end points are 2�=(�(2!�1)) and
2�=�; respectively) and move rightward when m increases. In order to keep �2
positive, C+(0; 0) is de�ned only for � < �01 ' 2:35:11 Further, �m1 ' 1:493 is the
minimum �1-value of the segments C�(0; n) while �M1 ' 2:733 is the maximum
�1-value of the segments C+(0; n). To determine these numerical values, we
solve d��1 =d� = 0 and d�+1 =d� = 0 for � to obtain the minimizer �m ' 0:956
and the maximizer �M ' 0:621; both of which are substituted into ��1 and �+1 ;
respectively, to obtain �m1 and �M1 :

Figure 3. Partition curve in the (�1; �2)
plane

10The aspect ratio of Figure 3 is appropriately adjusted. In particular, 1 � �1 � 2:8 and
0 � �2 � 19.
11Taking m = n = 0 and solving �+2 (�) = 0 yields � = �

p
2! � 1: Substituting it into �+1 (�)

gives
1

�
p
2! � 1

�
�

2
+ cos�1

�
2! � 1
!

��
which is approximately 2:35 for � = 1 and ! = 0:8:
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Concerning stability, the next result examines two cases, one with �1 = 0
and the other with 0 < �1 < �m1 and show that the positive equilibrium is locally
asymptotically stable. Those delays that do not a¤ect stability are referred to
harmless.

Theorem 2 The positive solution of equation (9) is locally stable (i) if �1 = 0
and �2 � 0 and (ii) if 0 < �1 < �m1 and �2 � �1:

The positive equilibrium is locally asymptotically stable with harmless de-
lays. However transient dynamic could be a¤ected by the delays. Taking
� = k = 1 and ! = 4=5; we perform several simulations with the same ini-
tial function and di¤erent values of the delays. Figure 4 geometrically summa-
rizes the results. In Figure 4(A) �1 = 1:1 and three di¤erent values of �2 are
�R2 = 1:1; �

B
2 = 1:1� 2 and �G2 = 1:1� 3 where R; B and G stand for red, blue

and green. The caption of Figure 4(A) means the sequence of the convergence
speed, that is, the red trajectory with the smallest delay of �2 converges �rst,
then the green trajectory follows and �nally the blue trajectory comes. The
captions of another �gures have the same meaning. In Figure 4(B) the values of
the delays are changed to �1 = 1:4; �R2 = 1:4; �

B
2 = 1:4�2 and �G2 = 1:4�3: As

a result, the green trajectory with the largest delay of �2 converges �rst. In
Figure 4(C), �1 = 1:4 is kept and the multipliers are changed to 3 and to 6
leading to �B2 = 1:4 � 3 and �G2 = 1:4 � 6: In consequence, the blue trajectory
with the medium delay of �2 converges �rst. It is clear that di¤erent lengths of
�2 a¤ect convergence speed but it is unclear whether a shorter delay speeds up
convergence.

(A) R > G > B (B) G > R > B (C) B > R > G

Figure 4. Harmless delay a¤ects convergence speed

We now turn to the general case where �m1 � �1 � �M1 and �2 > �1: The
outer part of the red-blue connected curve in Figure 3 is called a stability switch
curve since, as will be shown, a stability is switched on the curve from stability
to instability (i.e., stability loss) or from instability to stability (i.e., stability
gain).12 Before proceeding to the stability analysis, we discuss the direction of

12This curve is often called a partition curve as it separates the positive region of the delays
into two subregions.
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stability switch in which the solution of equation (12) cross the imaginary axis
as (�1; �2) deviates from the partition curve. We �rst show the following result.

Theorem 3 The sign of Q is negative on C+(m;n) and positive on C�(m;n)
where Q is de�ned as

Q = Im
h
a1(i�)a2(�i�)ei�(�2��1)

i
:

As in Gu et al. (2005), we call the direction of any segment of the stability
switch curve with increasing � the positive direction. As we move along the
curve in the positive direction, the region on the left hand side is called the
region on the left which will be denoted as L and the region on the right hand
side the region on the right denoted as R. We now can state Proposition 6.1 of
Gu et al. (2005) as follows.

Theorem 4 As (�1; �2) moves from R to L; a stability loss occurs if Q > 0
and so does a stability gain if Q < 0.

Theorems 3 and 4 imply that the positive equilibrium of equation (9) is
locally stable in the yellow region of Figure 3 and unstable in the white region.
We numerically con�rm the stability switch on the stability-switch curve. To
this end we �rst �x �a1 = 1:7, a little bit larger than �m1 and increase �2 from
1:7 to 19 along the vertical dotted line starting at point (�a1 ; �

a
1).

13 As is seen in
Figure 3, the line crosses the stability-switch curve from below four times, and
each intersection has a purple dot. Figure 5(A) is a bifurcation diagram with
respect to �2 and shows that the stability switch occurs at each intersection,
stability to instability at points c and e and instability to stability at points b
and d: The equilibrium point bifurcates to a limit cycle that expands, shrinks
and then merges to the equilibrium point as �2 moves from points a to b or
points c to d: According to Theorem 4, we have the following analytical results
which are coincide with the numerical results obtained above:

(i) stability is gained at points b and d since (�1; �2) crosses the curve from L
to R and Q > 0 on C�(0; 0) and C�(0; 1):

(ii) stability is lost at points c and e since (�1; �2) crosses the curve from L to
R and Q < 0 on C+(0; 1) and C�(0; 2):

Much more complex dynamics can arise when �1 takes a larger value. In
Figure 5(B) �1 is changed to �a

0

1 = 2:5 and then �2 is increased from the
point (�a

0

1 ; �
a0

1 ) on the 45 degree line to 19. As in the �rst example, stability
is gained at point b0 and lost again at point c0: After losing stability, di¤erent
from the �rst example, the positive equilibrium goes to complex dynamics via
a period-doubling-like bifurcation and then merges to a limit cycle via a period

13Notice that point (�a1 ; �
a
1) is on the 45 degree line and thus �2 > �1 holds on the vertical

line.
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halving-like bifurcation.14 At point d0; the real part of another eigenvalue pair
becomes positive. So two parts of eigenvalues have positive real part after point
d0. After point e0; the equilibrium is still unstable because the real part of only
one of the two eigenvalue pairs turns to be negative and thus there is still an
eigenvalue pair with positive real part. Therefore the equilibrium is unstable
after point c0 even though the vertical dotted line crosses the stability-switch
curve. Let L and R be the the numbers of intercepts of the vertical line with
C+(m;n) and C�(m;n); respectively. Then it is true that the equilibrium is
stable with (�1; �2) if R > L and unstable otherwise.

(A) �1 = 1:7 (B) �1 = 2:5

Figure 5. Bifurcation diagrams

The end points of C+(0; 0) and C�(0; 0) coincide and are denoted as the
black dots at the intersection of the 45 degree line and the stability-switch
curve. If �1 = �2; then the two delay equation (9) is identical with the one
delay equation (5). So along the 45 degree line in Figure 3, the positive equilib-
rium is stable if �1 = �2 < �� and unstable if �1 = �2 > ��where �� = 2�=ak.
For � < �m1 ; both the two delay equation and the one delay equation are stable.
The second delay is harmless in this case. For �m1 < �1 < ��; the one delay
equation is still stable and deviating (�1; �2) from the 45 degree line destabilizes
the positive equilibrium of the two delay equation. The second delay is a desta-
bilizing factor. Lastly for �1 > ��; both equations are unstable. Increasing the
value of �2 can make the equilibrium stable. So the second delay is a stabilizing
factor in this case.
Comparing these stability/instability results and returning to the original

spirit of equation (9), we numerically con�rms the roles of the second delay �2
in the learning process which are summarized as follows:

(S1) �2 does not a¤ect the learning process as far as �1 < �m1 .

14Although it is not depicted in Figure 5(B), the period doubling-halving bifurcation is
repeated as �2 increases further.
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(S2) The delay feedback can help to realize the true value of the maximum
demand if an appropriate value of �2 is selected. In other word, the delay
feedback can stabilize the equilibrium that is unstable in the one delay
equation.

(S3) Since the stability region becomes smaller as �1 increases, learning become
more di¢ cult for a larger value of �1:

(S4) When alternations of stability and instability take place several times
along the vertical line segment connecting points (�01; �

0
1) and (�

0
1; �2) with

�2 > �01, the stabilizing and destabilizing e¤ects of �2 alternately a¤ect
the positive equilibrium.

(S5) Various dynamics ranging from periodic cycles to chaos can emerge de-
pending on the choice of �2 when the equilibrium is unstable.

Stability switches can occur for �m1 < �1 < �
M
1 : These threshold values, �

m
1

and �M1 ; are !-dependent and Figure 6 illustrates how they depend on !: There,
! is increased from 0:55 to 0:99 with an increment of 0:01:15 For each value of
!; �m1 and �M1 are calculated from the �rst equations of (20) and (21) in the
same way as explained above. Connecting these �m1 s and �

M
1 s forms downward-

sloping and slightly upward-sloping curves. Painting the region surrounded by
these curves in yellow yields Figure 6. As can be seen, �m1 increases and �M1
decreases as ! increases. When ! = 1; the two delay equation (9) becomes the
one delay equation (5) having the critical value �� = �=2 ' 1:57 for � = 1. So,
both of �m1 and �M1 converge to �� as ! approaches unity.

Figure 6. Interval [�m1 (�); �
M
1 (�)]

15Since �M1 becomes very large for ! close to 1=2, we start from 0:55.
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Finally we examine whether the roots � = i� are single or not.

Theorem 5 The roots � = i� are single.

So at each point where stability is lost, only one pair of roots change the
sign of their real part from negative to positive, and at any point where stability
might be regained, only one pair of roots change the sign of their real part from
positive to negative.

4 Conclusion

This paper proposed a learning process of the monopolistic �rm that knows its
cost function and the marginal price but has uncertainty about the maximum
price. It is able to update repeatedly its belief of the maximum price by com-
paring the actual and predicted market prices. The paper focuses on the case
in which the �rm�s prediction is obtained by interpolation based on two delay
price data and examines the asymptotical stability of the delay learning process.
When the process is asymptotically stable, learning is successful because the �rm
can arrive at the true value of the maximum price. Local stability conditions
are derived, the stability regions are determined and illustrated. Furthermore,
the global behavior of the trajectory is numerically examined.
Three main results are demonstrated in the two delay model. First, it is

possible to stabilize the equilibrium which is unstable in the one delay model
by adopting the delay feedback of the past price information in the two delay
model. Second, complex dynamics involving chaos, which is impossible in the
one delay model, can emerge in the two delay model, especially when the delays
are large enough. Consequently it can be mentioned that the delay feedback is
a double-edged sword. On one hand, the belief of the �rm about the maximum
price might converge to the true value under a simple adaptive rule. On the
other hand, the �rm might su¤er from unsuccessful learning process. The new
aspect shown in the present paper is the repeated alternations of stability and
instability (i.e., the stability switches) and this is the third result. Introducing
delay allows us to dispense with the restrictive assumption on instantaneous
availability of price information which in turn ensures that a delay model is
applicable to a large class of dynamics models in which uncertainty and time
delays are often observed.
The dynamic model (3) is linear, when local asymptotical stability implies

global asymptotical stability. However (4) and (5) are nonlinear, where only
local asymptotic stability can be guaranteed under the derived conditions. The
learning processes (3) and (4) can be generalized as

_ae(t) = g(a� ae(t))

where function g is sign preserving, that is, for all � 6= 0;

�g(�) > 0:
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This extension carries over to two delay models like (9). In our future research,
di¤erent types of such nonlinear learning schemes will be introduced in our
model and we will investigate the asymptotical behavior of the resulted dynam-
ics. Uncertainty, time delay and learning of other model parameters will be
additional subjects of our study.
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Appendix

In this appendix, the proofs of the Theorems given in this paper are pre-
sented.

Proof of Theorem 1:
As is seen in (17), the domain of � is the interval [�(2! � 1); �]. At the

initial point � = �(2! � 1); we have

�2 + 2�2! � �2
2��!

= 1 and
�2 � 2�2! + �2
2��(1� !) = �1

implying
�1(�(2! � 1)) = 0 and �2(�(2! � 1)) = ��

and at the end point � = �; we have

�2 + 2�2! � �2
2��!

= 1 and
�2 � 2�2! + �2
2��(1� !) = 1

implying
�1(�) = 0 and �2(�) = 0:

Therefore the initial and end points of C+(m;n) are

I+(m;n) =

�
1

�(2! � 1)

�
3�

2
+ 2(m� 1)�

�
;

1

�(2! � 1)

�
3�

2
+ (2n� 1)� � �

��
and

E+(m;n) =

�
1

�

�
3�

2
+ (2m� 1)�

�
;
1

�

�
3�

2
+ (2n� 1)�

��
:

Similarly, the initial and end points of C�(m;n) are

I�(m;n) =

�
1

�(2! � 1)

�
3�

2
+ (2m� 1)�

�
;

1

�(2! � 1)

�
3�

2
+ (2n� 1)� + �

��
and

E�(m;n) =

�
1

�

�
3�

2
+ (2m� 1)�

�
;
1

�

�
3�

2
+ (2n� 1)�

��
:

Notice that E+(m;n) = E�(m;n) and I+(m;n + 1) = I�(m;n); that is,
C+(m;n) and C�(m;n) have the same end points and C+(m;n+1) and C�(m;n)
have the same initial points. So with �xed value of n; these curves from a con-
tinuous curve when the segments of C+(m;n) and C�(m;n) are attached to
each other at the initial and endpoints.

Proof of Theorem 2.
(i) If �1 = 0, then the characteristic polynomial (11) has the form

�+ �! + �(1� !)e���2 = 0;
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and if � = i� with � > 0; then

i� + �! + �(1� !)(cos �2� � i sin �2�) = 0:

Separation of the real and imaginary parts gives

�(1� !) cos �2� = ��!

and
�(1� !) sin �2� = �:

By adding the squares of these equations

�2(1� !)2 = �2!2 + �2

or
�2 = �2(1� 2!)

which is impossible since ! � 1=2: If in addition �2 = 0; then the positive
solution is also stable, since the characteristic equation becomes

�+ �! + �(1� !) = 0

implying a negative eigenvalue, � = ��:
(ii) if �1 = �2; then the two delay equation (10) is reduced to the one delay

equation (5) which is stable for � < ��: As �m1 < ��; equations (10) and (5)
are stable as far as (�1; �2) moves along the 45 degree line. Any other (�1; �2)
with 0 < �1 < �m1 and �2 > �1; does not solve the characteristic equation (13)
implying that no stability switch occurs. Thus the positive equilibrium is locally
stable.

Proof of Theorem 3.
From (14) we have

Q = Im

�
�!

i�

�
�(1� !)
�i�

�
(cos �(�2 � �1) + i sin �(�2 � �1))

�

=
�2!(1� !)

�2
sin �(�2 � �1):

We consider �rst C+(m;n). From (20)

sin �(�2 � �1) = sin
�
� cos�1A� cos�1B

�
where

A =
�2 + 2�2! � �2

2��!
> 0 and B =

�2 � 2�2! + �2
2��(1� !) :

Notice that B � 0 if � � �
p
2! � 1 and B < 0 as � < �

p
2! � 1: Furthermore,

both cos�1A and cos�1B are between 0 and �: So

sin �(�2 � �1) = � sin(cos�1A) cos(cos�1B)� cos(cos�1A) sin(cos�1B)

= �A
p
1�B2 �B

p
1�A2
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which can be positive only when B < 0 and

�B
p
1�A2 > A

p
1�B2

that is, �B > A: It can be written as

��
2 � 2�2! + �2
2��(1� !) >

�2 + 2�2! � �2
2��!

or equivalently
� < �(2! � 1)

which cannot occur. So at every point of C+(m;n); Q < 0:
We next consider C�(m;n): From (21),

sin �(�2 � �1) = sin
�
cos�1A+ cos�1B

�
= sin(cos�1A) cos(cos�1B) + cos(cos�1A) sin(cos�1B)

= B
p
1�A2 +A

p
1�B2

which is positive if B � 0 or if B < 0 and

A
p
1�B2 > B

p
1�A2:

The last inequality can be written as A > �B or � � �(2!� 1) which is always
the case. So at every point of C�(m;n); Q > 0:

Proof of Theorem 4.
It is given as Proposition 6.1 in Gu et al. (2005).

Proof of Theorem 5.
If a root � is multiple, the it solves two equations,

�+ �!e���1 + �(1� !)e���2 = 0 (A-1)

and
1� �1�!e���1 � �2�(1� !)e���2 = 0; (A-2)

from which we have

e���1 =
1 + �2�

�!(�1 � �2)
and e���2 =

1 + �1�

�(1� !)(�2 � �1)
: (A-3)

From (A-3) we see that

cos ��1 � i sin ��1 =
1 + i��2

�!(�1 � �2)
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implying that
sin ��1 = ���2 cos ��1 (A-4)

and from (A-3) we also have

sin ��2 = ���1 cos ��2: (A-5)

However comparing the imaginary parts of (A-2),

�!�1 sin ��1 + �(1� !)�2 sin ��2 = 0: (A-6)

By using (20), we have

@�+1
@�

= � 1

�2
�
��+1

�
+
1

�

�
� 1p

1�A2
@A

@�

�
wherep
1�A2 =

r
1� cos2

�
��+1 �

�

2

�
=
q
1� sin2

�
��+1

�
=
��cos ��+1 �� = � cos ��+1 ;

since �1(�) 2 (0; �) and so ��+1 2 (�=2 + 2m�; 3�=2 + 2m�): Furthermore,

@A

@�
=
�2 + �2 � 2�2!

2�!�2
=
B(1� !)
!�

implying that
@�+1
@�

= � 1

�2

�
��+1 �

B(1� !)
! cos ��+1

�
: (A-7)

Notice that from the second equation of (20),

B = cos
��
2
� ��+2

�
= sin ��+2

and by using (A-4) and (A-6), the derivative (A-7) can be further simpli�ed:

� 1

�2

�
��+1 �

sin ��+2 (1� !)
! cos ��+1

�
= � 1

�2

264��+1 +
�+1
�+2
sin ��+1

cos ��+1

375
= � �+1

�2�+2 cos ��
+
1

�
��+2 cos ��

+
1 + sin ��

+
2

�
= 0

meaning that any multiple root is a stationary point of �+1 :
Consider next �+2 as function of �. Notice �rst that

@�+2
@�

= � 1

�2
�
��+2

�
+
1

�

�
� 1p

1�B2
@B

@�

�
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where from the second equation of (20),

p
1�B2 =

r
1� cos2

��
2
� ��+2

�
=
q
1� sin2

�
��+2

�
=
��cos ��+2 �� = cos ��+2 ;

since cos�1B 2 (0; �) and so ��+2 2 (��=2 + 2n�; �=2 + 2n�): Furthermore,

@B

@�
=
�2 � �2 + 2�2!
2�(1� !)�2 =

A(1� !)
(1� !)�

implying that
@�+2
@�

= � 1

�2

�
��+2 �

A!

(1� !) cos ��+2

�
: (A-8)

Notice that from the second equation of (20),

A = cos
�
��+1 �

�

2

�
= sin ��+1

and by using (A-5) and (A-6), the derivative (A-8) can be further simpli�ed:

� 1

�2

�
��+2 �

sin ��+1 !

(1� !) cos ��+2

�
= � 1

�2

264��+2 +
�+2
�+1
sin ��+2

cos ��+2

375
= � �+2

�2�+1 cos ��
+
2

�
��+1 cos ��

+
2 + sin ��

+
2

�
= 0

meaning that any multiple root is a stationary point of both �+1 and �
+
2 , which

is impossible, since we cannot have both horizontal and vertical tangent lines
simultaneously at any point of the stability switch curve.
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