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Abstract. The purpose of this paper is to study dynamics of a monopolistic
�rm in a continuous-time framework. The �rm is assumed to be boundedly
rational and to experience time delays in obtaining and implementing infor-
mation on output. A dynamic adjustment process is based on the gradient
of the expected pro�t. The paper is divided into three parts: We examine
delay e¤ects on dynamics caused by one-time delay and two-time delays in the
�rst two parts. Global dynamics and analytical results on local dynamics are
numerically con�rmed in the third part. Four main results are demonstrated.
First, the stability switch from stability to instability occurs only once in the
case of the one-time delay. Second, the alternation of stability and instability
can continue if two time delays are involved. Third, the birth of Hopf bifurca-
tion is analytically shown if stability is lost. Finally, in a bifurcation process,
there are a period-doubling cascade to chaos and a period-halving cascade to
the equilibrium point in the case of two time delays if the di¤erence between
two the delays is large.
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1. Introduction

Traditional monopoly market has a structure in which there is only one seller,
called a monopolistic �rm, and there are in�nitely many small buyers whose be-
havior is described by the market demand function. Further, the �rm is assumed
to be rational in a sense that full information or knowledge on demand is available
to it without any delays. As a result, it is enough for the �rm to select either price
or quantity (but not both) to maximize pro�t. Once one of price and quantity is
chosen, then the other is automatically determined through demand. No matter
which choice is made, it can jump to the same optimum point in one shot with-
out any dynamic considerations. Full information is, thus, the most important to
make an optimal decision and to realize it. However, at the same time, it is very
di¢ cult, expensive and time-consuming to obtain. In reality, the monopolistic �rm
has only limited information. In addition to full information, most existing stud-
ies also assume the availability of instantaneous information. This may be due to
mathematical convenience and is against actual observations that a seller usually
obtains price information and sales data with some delays and reacts cautiously.
Getting closer to the real world and making the monopoly theory more convincing,
we replace this extreme assumption with the more plausible behavior assumption
in which full and instantaneous information is eliminated. First, it is assumed that
the monopolistic �rm knows only a few points on the demand. A natural conse-
quence of this alternation is that the �rm is not able to move to the optimal point
with one shot but gropes for it. Second, it is assumed that in revising the deci-
sions, the �rm experiences time delays inherent in phenomena like information and
implementation delays. Such a �rm is called boundedly rational. Therefore, we aim
at studying a dynamic model of a boundedly rational monopolistic �rm in order to
describe an adjusting process of optimal decisions with time delays.
In constructing dynamic economic models, the most common processes are based

on either the gradients of the pro�t functions or the best replies of the economic
agents. Time delays can be modeled in two di¤erent ways: �xed time delays and
continuously distributed time delays. The choice of "time", continuous time or
discrete time, remains matter for debate. Cournot oligopoly is frequently discussed
in a discrete-time model with the best replies. In the case of the gradient method, we
mention the works of Bischi and Naimzada (1999) and Bischi and Lamantia (2002)
for discrete-time oligopoly dynamics without time delays. Recent developments on
the oligopoly theory can be found in Bischi et al. (2010) which contains models
with both discrete and continuous time scales. Concerning discrete-time monopoly
dynamics, we mention Puu (2003) and Naimzada (2011). The former assumes
bounded rationality and shows that the monopolistic �rm behaves in an erratic
way. The latter exhibits that a �xed delay dynamics of the monopoly with bounded
rationality can be described by the well-known logistic equation when the �rm takes
a learning activity of revising decisions.
In recent years it has been recognized in continuous-time economic dynamics

that a delay di¤erential equation is useful to describe the periodic and aperiodic
behavior of economic variables. Howroyd and Russel (1984) detect the stability
conditions of delay output adjustment processes in a general N -�rm oligopoly with
�xed time delays. On the other hand, Chiarella and Khomin (1996) and Chiarella
and Szidarovszky (2001) examine delay di¤erential oligopolies with best replies
by using continuously distributed time delays. Furthermore, Bélair and Mackey
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(1989) develop a model of price adjustment with production delays, Invernizzi and
Medio (1991) investigate various economic models with continuously distributed
delays and con�rm analytically as well as numerically the conditions for chaotic
solution. Recently, Matsumoto (2009) reconstructs Goodwin�s accelerator model
as a delay neutral di¤erential equation and makes it clear that multiple limit cycles
coexist whereas Matsumoto and Szidarovszky (2011a) introduce a �xed delay in
production and a mound-shaped production function into the neoclassical one-
sector growth model and show the birth of complex dynamics. With the in�nite
dimensionality created by a �xed-time delay, even a single �rst-order equation is
transformed into an equation with a su¢ cient number of degrees of freedom to
permit the occurrence of complex dynamics involving chaotic phenomena. This
�nding indicates that �xed-time delay models of a dynamic economy may explain
various complex dynamic behavior of the economic variables. In addition to this,
dynamics of a delay di¤erential monopoly with the gradient method has not yet been
revealed in the existing literature. Therefore, in this study, we draw our attention
to dynamics of a continuous-time and �xed-delay monopoly under a circumstance
where a �rm is boundedly rational and uses the gradient of the expected pro�t to
revise its output decision.
The paper is organized as follows. Section 2 constructs a basic monopoly model

with linear price and cost functions and then introduces time delay; single time
delay in the �rst part and multiple time delays in the second part. Local stability
conditions are derived and the birth of a Hopf bifurcation is studied. Section 3
performs numerical simulations to con�rm global behavior of a unstable monopoly
equilibrium. Section 4 concludes the paper.

2. Delay Monopoly

Consider optimal behavior of a boundedly rational monopolistic �rm which pro-
duces output q with marginal cost c. The price function is linear

f(q) = a� bq; a; b > 0:

We con�ne attention to a situation where the �rm can estimate the derivative of the
expected pro�t by using actual prices and demands it received in the past, although
it does not know the price function and does not even know that it is linear. The
estimated derivative at a value qe of output is assumed to be

d�e

dqe
= a� c� 2bqe:

So the approximating gradient dynamics is

(2.1) _q = �(q)
d�e

dqe

where �(q) is an adjustment function and the dot over a variable means a time
derivative. In constructing best response dynamics, global information is required
about the pro�t function, however, in applying gradient dynamics, only local infor-
mation is needed. We make the familiar assumption that the adjustment function
is linear in output:

Assumption 1.: �(q) = �q with � > 0:
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The gradient dynamics under Assumption 1 with an expected output is presented
by

(2.2) _q(t) = �q(t) [a� c� 2bqe(t)]
where t denotes a point of continuous time.

2.1. Single Fixed-Delay. Dynamics depends on the formation of expectations.
We start with a simple case in which at time t; the �rm forms its expected demand
to be equal to realized demand at time t� � ; � > 0: Since it can be supposed that
the actual output produced at time t� � is equal to relaized demand at the same
time, the expected demand is given in terms of output:

Assumption 2: qe(t) = q(t� �):
Replacing qe(t) in equation (2.2) with q(t� �), we obtain the output adjustment

process as a nonlinear di¤erential equation with one �xed-time delay:

(2.3) _q(t) = �q(t) [a� c� 2bq(t� �)] :
Equation (2.3) has two stationary points; a trivial point q(t) = 0 and a nontrivial
point

qM =
a� c
2b

where a > c is assumed to ensure a positive stationary output. We may call qM a
monopoly equilibrium.
Our �rst concern is upon local stability of qM . For this purpose, we analyze

the linearized version of (2.3) about the monopoly equilibrium. Linearization and
introduction of the new variable x(t) = q(t)� qM reduce equation (2.3) to

(2.4) _x(t) = �x(t� �) with  = �(a� c) > 0;
which has the zero-solution, x(t) = 0 (or q(t) = qM ) for all t � 0. If there is no
time delay, � = 0, then equation (2.4) becomes an ordinary di¤erential equation
and has a stable solution, x0e�t; where x0 is an initial point. If there is a positive
time delay, � > 0, then equation (2.4) becomes a linear delay di¤erential equation
where initial data are given by a continuous function de�ned for �� � t � 0. It
is impossible to derive an explicit solution even though the equation seems to be
simple. In spite of this inconvenience, it is possible to analyze qualitative aspects of
the solution in the following way. Substituting the exponential solution x(t) = x0e�t

into (2.4) yields the following characteristic equation associated with the linearized
delay equation:

(2.5) �+ e��� = 0:

The su¢ cient condition for local asymptotical stability of the zero-solution is that
the real parts of the eigenvalues are negative.
The characteristic equation is a function of � and so are its roots. It is seen

that the zero solution is asymptotically stable for � = 0. By continuity we expect
that it remains asymptotically stable with small values of � : Equation (2.5) implies
that the real roots are at the intersection of an exponential curve (i.e., e��� ) and a
negative-sloping straight line (i.e., ��=). We have two real roots, one real root or
no real root, depending on the value of � : It can be shown that the line is tangent
to the curve at � = 1=e. For � satisfying the tangency condition, equation (2.5)
generates a unique negative root. Further increases of � ; ceteris paribus, may change
the zero real part of � to positive making the system unstable. Such phenomena is
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referred to as a stability switch. In order to understand the stability switch of (2.4),
it is crucial to determine a threshold value � = �� at which the real parts of the
complex roots of (2.5) are zero and their derivatives are positive. We then assume,
without loss of generality, that� = i�; � > 0; is a root of (2.5) for � = ��. In order
to hold equation (2.5) under � > 0, the real and imaginary parts must satisfy the
followings:

 cos �� = 0

and

� �  sin �� = 0:
Adding up the squares of both equations yields �2 = 2 from which we obtain

� = :

The necessary and su¢ cient conditions for the existence of a pair of purely imagi-
nary roots are

cos �� = 0

and

sin �� =
�


= 1

from which we have in�nitely many solutions,

(2.6) � =
1



��
2
+ 2n�

�
; n = 0; 1; 2; :::

The real parts of the roots are zero for � satisfying (2.6). We now detect the
stability switch at which the equilibrium loses stability. Since � is a function of delay
� ; we need the minimum solution of � for which a derivative of �(�) is positive.
By selecting � as the bifurcation parameter and di¤erentiating the characteristic
equation (2.5) with respect to � yield

(1� �e��� )d�
d�
= �e��� :

which is reduced to �
d�

d�

��1
=
1� �e���
�e���

:

Obtaining e��� = ��= from (2.5) and substituting it into the last equation, we
can show that the real parts are positively sensitive to a change in � ;

Re

"�
d�

d�

��1�����
�=i�

#
=
1

�2
> 0 or

d(Re�)

d�

����
�=i�

> 0:

This inequality implies that all roots that cross the imaginary axis at i� cross from
left to right as � increases. Matsumoto and Szidarovszky (2011b) demonstrate that
stability switch does not occur for any � > �=(2) given in (2.6), although the
real parts are zero and their derivatives with respect to � are non-zero. Hence the
threshold value of � is

�� =
�

2

This result is summarized as follows:
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Theorem 1. The delay output adjustment process (2.3) has a threshold value ��

of delay: The monopoly equilibrium is locally asymptotically stable for 0 < � < ��;
locally unstable for � > �� and undergoes a Hopf bifurcation at � = �� where �� is
de�ned by

�� =
�

2�(a� c) :

Theorem 1 is visualized in Figure 1(A) where the higher hyperbolic downward
sloping curve is the locus of � = �=2 and the lower hyperbolic curve is the locus
of � = 1=e: The latter curve is a partition curve between the real roots and the
complex roots. The former curve is the stability switch curve that divides the �rst
quadrant of the the (; �) plane into two regions: the gray region in which the
monopoly equilibrium is locally stable and the white region in which it is locally
unstable. Although local stability (instability) implies global stability (instability)
in a linear model, this is not necessarily a case in nonlinear dynamic system such as
(2.3)1. To observe global behavior of the unstable equilibrium, we perform numerical
simulations. Taking � = 1=2; a = 3; c = 1; b = 1 and  = 1; we select four
parametric combinations of (; �) indicated by the black points along the vertical
line at  = 1 in the white region of Figure 1(A). Corresponding dynamics are
described by limit cycles with di¤erent amplitudes as shown in Figure 1(B). It can
be seen that the amplitude becomes larger as the delay becomes longer.

(A) Divisions of the (; �) plane (B) Birth of limit cycles

Figure 1. Dynamics with one delay

2.2. Multiple Fixed-Delays. We next examine stability of the monopoly equi-
librium when the estimate of the price function is based on a weighted average of
past estimates at two di¤erent times, t� �1 > 0 and t� �2 > 0, which is the same
as estimating the derivative of the price function with a linear combination of two

1Using a logistic single species population model, which is essentially the same as the delay
monopoly model (2.3), Wright (1955) shows global stability under the condition of � < 3=2 and
presumes that his method can be used to extend the global result to � < 2�=. However this
conjecture still remains open.
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past output values. Similarly to the case of a single �xed delay we have now the
following assumption:

Assumption 3: qe(t) = !q(t� �1) + (1� !)q(t� �2) with 0 < ! < 1:
Replacing qe(t) in equation (2.2) with this weighted average, we obtain the out-

put adjustment process as a di¤erential equation with two �xed-time delays,

(2.7) _q(t) = �q(t) [a� c� 2b (!q(t� �1) + (1� !)q(t� �2))] :

Notice that qM is also a positive stationary state of (2.7). As in the single delay case,
we �rst analyze local stability of qM : Linearizing equation (2.7) in a neighborhood
of the stationary point and using x(t) = q(t)� qM yield a linear delay equation,

(2.8) _x(t) = �[!x(t� �1) + (1� !)x(t� �2)]:

Looking for a solution x(t) = x0e�t presents the characteristic equation

�+ !e���1 + (1� !)e���2 = 0:

For notational simplicity, let

�� =
�


; 1 = �1 and 2 = �2

which lead to the simpli�ed form,

��+ !e�
��1 + (1� !)e���2 = 0:

Dropping the bar from ��; we obtain the normalized characteristic equation,2

(2.9) �+ !e��1 + (1� !)e��2 = 0:

When 1 = 2, equation (2.9) is reduced to equation (2.5). Thus 1 6= 2 is
assumed henceforth. Three cases are identi�ed: (1) ! > 1=2; (2) ! = 1=2 and (3)
! < 1=2: Since the �rst and third cases are symmetric, we con�ne attention to the
case of ! � 1=2.
We construct the loci of (1; 2) on which the real part of an eigenvalue is zero.

We thus assume that � = i� with � > 0 is a root of equation (2.9) satisfying

(2.10) i� + !e�i�1 + (1� !)e�i�2 = 0:

Real and imaginary parts are

(2.11) ! cos(�1) + (1� !) cos(�2) = 0

and

(2.12) � � ! sin(�1)� (1� !) sin(�2) = 0:

2Suppose that the characteristic equation is

�+ Ae���1 + Be���2 = 0

where the weights A and B are positive constants and A+B 6= 1: Dividing it by (A+B) yields
�

(A+B)
+ 

A

(A+B)
e���1 + 

B

(A+B)
e���2 = 0:

Let
�� =

�

(A+B)
; i = (A+B)� i, ! =

A

A+B
;

then the resultant characteristic equation has essentially the same form as the one in (2.9).
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When the real part of an eigenvalue changes sign, then the corresponding point
(1; 2) has to be on the loci satisfying (2.11) and (2.12). Then we call it a stability-
switch curve. As derived in Appendix I, it consists of the two segments, one segment
is denoted by L1(k; n) and the other by L2(k; n) for each k; n 2 N:

(2.13) L1(k; n) :

8>>>><>>>>:
1 =

1

�

�
sin�1

�
�2 + 2! � 1

2�!

�
+ 2k�

�

2 =
1

�

�
� � sin�1

�
�2 � 2! + 1
2�(1� !)

�
+ 2n�

�
and

(2.14) L2(k; n) :

8>>>><>>>>:
1 =

1

�

�
� � sin�1

�
�2 + 2! � 1

2�!

�
+ 2k�

�

2 =
1

�

�
sin�1

�
�2 � 2! + 1
2�(1� !)

�
+ 2n�

�
Specifying the value of !, we examine the shapes of L1(k; n) and L2(k; n):

Asymmetric weights: ! >
1

2
:

Using equations (2.13) and (2.14), we can compute the starting point (s1; 
s
2)

and the end point (e1; 
e
2) of L1(k; n) :

s1 =
1

2! � 1

��
2
+ 2k�

�
and s2 =

1

2! � 1

�
3�

2
+ 2n�

�
;

e1 =
�

2
+ 2k� and e2 =

�

2
+ 2n�;

and the starting point (S1 ; 
S
2 ) and the end point (

E
1 ; 

E
2 ) of L2(k; n) are

S1 =
1

2! � 1

��
2
+ 2k�

�
and S2 =

1

2! � 1

�
��
2
+ 2n�

�
;

E1 =
�

2
+ 2k� and E2 =

�

2
+ 2n�:

Notice that S2 is infeasible at n = 0: Since 2 = 0 for � =
p
2! � 1; only the

segment of L2(0; 0) between
p
2! � 1 and 1 is feasible. Notice also that (e1; e2) =

(E1 ; 
E
2 ) and (

s
1; 

s
2) = (S1 ; 

S
2 + 2�=(2! � 1)) with �xed k: The �rst equality

implies that L1(k; n) and L2(k; n) have the same end point while the second equality
indicates that the starting point of L1(k; n) is the same as that of L2(k; n + 1).
Therefore the L1(k; n) and L2(k; n) segments form a continuous curve with n =
0; 1; 2::: It can be con�rmed that both segments shift upward as n increases with
given k and rightward as k increases with given n: We summarize these properties
of L1(k; n) and L2(k; n) as follows:

Proposition 1. (1) Given k and n; the end point of L1(k; n) is the same as the
end point of L2(k; n) while the starting point of L1(k; n) is the same as the starting
point of L2(k; n+1): (2) The loci shift upward if n increases and k is �xed whereas
it shifts rightward if k increases and n is �xed.
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The monotonicity of the loci, L1(k; n) and L2(k; n); as well as their extreme
(minimum and maximum) values can be examined based on the derivatives @1=@�
and @2=@�, which are presented in Appendix II. It is derived there that for j = 1; 2;

sign

"
@1
@�

����
Lj(k;n)

#
= �sign [�1 + tan(�2)]

and

sign

"
@2
@�

����
Lj(k;n)

#
= �sign [�2 + tan(�1)]

In order to simplify further discussions we change the coordinates (1; 2) to (�1; �2)
to get the transformed segments:

`1(k; n) :

8>>>><>>>>:
�1 = sin

�1
�
�2 + 2! � 1

2�!

�
+ 2k�

�2 = � � sin�1
�
�2 � 2! + 1
2�(1� !)

�
+ 2n�

and

`2(k; n) :

8>>>><>>>>:
�1 = � � sin�1

�
�2 + 2! � 1

2�!

�
+ 2k�

�2 = sin
�1
�
�2 � 2! + 1
2�(1� !)

�
+ 2n�

They also form continuous curves with �xed k for n = 0; 1; 2; :::, which are periodic
in both directions �1 and �2: Figure 2(A) shows these segments with k = 0 and
n = 0; 1:
In order to see the monotonicity of the loci we also show the curves

�1 = � tan(�2) and �2 = � tan(�1)

in Figure 2(A) where the former de�ned for the three domains of �2; (�=2; 3�=2);
(3�=2; 5�=2) and (5�=2; 7�=2) is illustrated by the �atter real curves and the latter
de�ned for �1 2 (�=2; �) is by the steeper curve. Let us see the monotonicity
of L1(0; 0) �rst. Locus `1(0; 0) has an intercept denoted as m0 with the curve
�1 = � tan(�2) for �2 2 (�=2; 3�=2). Before this intercept (in the direction
of increasing value of � which is indicated by the arrows) 1 decreases in �, after
the intercept, increases. Therefore this point corresponds to the minimum value
of 1 on L1(k; n); denoted by 

m
1 in Figure 2(B). On `1(k; n), �2 > � tan(�1)

everywhere, so 2 decreases in � here. Consequently, the slope of L1(0; 0) de�ned
by

@2
@1

=
@2=@�

@1=@�

is positive along the corresponding part from S0 tom0 of L1(0; 0) and the inequality
is reversed along the remaining part from m0 to E0 as shown in Figure 2(B). We
now turn attention to the monotonicity of the L2(0; 0) curve. Locus `2(0; 0) has an
intercept with the curve �1 = � tan(�2) for �2 2 (��=2; �=2): Since its ordinate
is negative, the intercept is not shown in Figure 2(A). It is checked that @1=@� < 0
and @2=@� > 0; which then imply @2=@1<0 along the L2(0; 0) locus.
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The starting point S0 and end point E1 of the L2(0; 1) locus are given by

�
�

2(2! � 1) ;
3�

2(2! � 1)

�
and

�
�

2
;
5�

2

�

where the ordinates of these points are the same

3�

2(2! � 1) =
5�

2
if ! = 0:8:

Since the `2(0; 1) locus intercepts once with the �1 = � tan(�2) curve at point
M and twice with the �2 = � tan(�1) curve at points A and B, the corresponding
curve of L2(0; 1) takes non-monotonic shape. Let see this more precisely. As �
increases from 2!�1 to 1, the point (�1; �2) moves along the `2(0; 1) locus from
S0 to E1. Before intercept M , �1 < � tan(�2) showing that 1 increases in �,
and after this intercept, 1 decreases, so this point corresponds to the maximum
value of 1 on L2(k; n); denoted by 

M
1 : Since we have �2 < � tan(�1) in the

left of the �2 = � tan(�1) curve and �2 > � tan(�1) in the right, 2 decreases
between the two intercepts A and B, and increases otherwise. Therefore the �rst
intercept corresponds to the maximum value of 2 and the second corresponds to
the minimum value of 2 on L2(k; n). By the three intersections between S0 and
E1, the whole L2(0; 1) locus is divided into four pieces, along each of which we have
the following slopes in the (1; 2) plane,

(1)
@2
@1

> 0 as
@1
@�

> 0 and
@2
@�

> 0 between S0 and M;

(2)
@2
@1

< 0 as
@1
@�

< 0 and
@2
@�

> 0 between M and A;

(3)
@2
@1

> 0 as
@1
@�

< 0 and
@2
@�

< 0 between A and B;

(4)
@2
@1

< 0 as
@1
@�

< 0 and
@2
@�

> 0 between B and E1:

In the same way, we can depict the loci of L1(k; n) and L2(k; n) for any other
values of k and n. Notice that all the segments of L1(k; n) and L2(k; n) are located
within the interval [m1 ; 

M
1 ]. In Figure 2(B) with the parameter values speci�ed

above,

m1 ' 1:493 and M1 ' 2:733:

In Figure 2(A), the maximum and minimum values of �1 on `i(k; n) are given by

�mm1 ' 1:427 and �MM1 ' 1:715
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(A) In the (�1; �2) plane (B) In the (1; 2) plane

Figure 2. Partition curves

We now turn our attention to the stability of the monopoly equilibrium. Needless
to say, qM is asymptotically locally stable when �1 = �2 = 0: By continuity, it is
locally asymptotically stable if �1 and �2 are su¢ ciently small. Since the segments
of L1(k; n) and L2(k; n) are located within the interval [m1 ; 

M
1 ], the vertical line

with 1 < m1 crosses none of these segments. Therefore the output adjustment
process is asymptotically stable regardless of the values of 2 > 0 if 1 is strictly less
than m1 : Such delays of (1; 2) are called harmless and belong to the light-gray
rectangle in the left of Figure 3.
Next we investigate stability for 1 > 

m
1 and the occurrence of Hopf bifurcation.

Fixing 2 > 0; we choose 1 as a bifurcation parameter and then di¤erentiate the
characteristic equation (2.9) having � = �(1) with respect to 1 to obtain

d�

d1
+ !e��1

�
� d�
d1

1 � �
�
+ (1� !)e��2

�
� d�
d1

2

�
= 0:

Solving this for the inverse of d�=d1 gives�
d�

d1

��1
=

1� !1e��1 � (1� !)2e��2
�!e��1

=
1� !1e��1 + 2(�+ !e��1)

�!e��1

=
1 + �2
�!e��1

+
!(2 � 1)

�!

where we used the characteristic equation (2.9). If � = i�; then

Re

�
d�

d1

��1
= Re

1 + i�2
i�!(cos(�1)� i sin(�1))

=
sin(�1) + �2 cos(�1)

�!

so Re(d�=d1) has the same sign as sin(�1)+�2 cos(�1):With any �xed positive
value of 2 we can gradually increase the value of 1 from zero until it intercepts
with a segment L1(0; n) or L2(0; n): It is easy to prove that at this and each later
intercepts there is a unique pure complex eigenvalue.
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Assume �rst that 1 crosses a segment L1(0; n) from the left. There �1 2
(0; �=2) implying that both sin(�1) and cos(�1) are positive as well as Re(d�=d1) >
0. Therefore stability is lost everywhere on the segments L1(0; n): Assume next that
1 crosses a segment L2(0; n) from the left where cos(�1) � 0 as �1 2 [�=2; �].
Stability is lost when Re(d�=d1) > 0 at the intercept and the real part of an
eigenvalue changes sign from positive to negative if Re(d�=d1) < 0: If there was
only one stability switch from negative to positive real part before, then stability
is regained, since at the intercept with L2(0; n) the real part of the same eigenvalue
changes back to negative. If there are more than one stability switches from neg-
ative to positive real parts before, then stability cannot be regained, since at least
one eigenvalue will still have positive real part. Based on (4.13), it is clear that

Re

�
d�

d1

����
�=i�

�
= �� cos(�1)

!

@2
@�

����
L2(k;n)

;

therefore Re(d�=d1) > 0 when 2 increases in � and Re(d�=d1) < 0 when 2
decreases in �. Hence stability is switched to instability when @2=@� > 0 whereas
instability might be switched to stability when @2=@� < 0. Figure 3 illustrates
these segments of Li(k; n) for i = 1; 2 with the parameter values of � = 0:5; a =
3; b = c = 1, ! = 0:8; k = 0 and n = 0; 1; 2 when � increases from 2! � 1 to 1.3
The points of L1(0; n) form the red curves, and those of L2(0; n) the blue curves
while the green dotted points denoted as Si and Ei are the starting and end points
of L1(k; n) and L2(k; n) as indicated by the directions of the arrows.
When the real part of an eigenvalue changes from negative to positive, then

stability is lost for sure. If the change is from positive to negative, then stability
may be regained but not necessarily, as it is illustrated in the following two cases.
If 2 = 

(1)
2 as shown in Figure 3, then the �rst intercept is with L1(0; 2) where

stability is lost, since the real part of an eigenvalue becomes positive. If 1 is
increased further, then there is a second intercept with L2(0; 2) where the real
part of the same eigenvalue becomes negative again, so stability is regained. If
1 is increased even further, then there is a third intercept with L1(0; 1) where
stability is lost again. However if we select 2 = 

(2)
2 , then we also have three

intercepts, the �rst two are with L1(0; 2) and L1(0; 1); so two eigenvalues will have
positive real parts, and the sign of only one of them changes back to negative at the
third intercept with L2(0; 2): Therefore in this case no stability switch occurs since
stability cannot be regained. The stability region is the union of the light-gray and
dark-gray areas. Hopf bifurcation occurs on the boundary curve between the gray
region and the white region except where 2 is minimal or maximal on L2(0; n);
which are not really crossing points.
If the value of 1 is �xed and 2 is the bifurcation parameter, then by using the

same approach, the same stability region is derived and Hopf bifurcation occurs
at the crossing points except if 1 = m1 or 1 = M1 . These points are not
crossing points, since the corresponding vertical line is the tangent line to L1(0; n) or
L2(0; n): This is the same result which was obtained earlier by Hale and Huang
(1993) and Matsumoto and Szidarovszky (2011c) and summarized as follows:

3We will soon refer to the two black dots denoted by A and B.
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Theorem 2. (1) Delays are harmless if 1 � m1 and 2 � 0: (2) L1(0; n) and
L2(0; n) constitute a stability-switch curve; The monopoly equilibrium is locally as-
ymptotically stable in the dark-gray region of Figure 3 and it is locally unstable in
the white region.

Figure 3. Stability-switch curve in the
(1; 2) plane with k = 0

Symmetric Weights: ! =
1

2
:

Substituting ! = 1=2 into (2.13) and (2.14) we obtain the loci with symmetric
weights,4

(2.15) L1(k; n) :

8>><>>:
1 =

1

�

�
sin�1 [�] + 2k�

�
2 =

1

�

�
� � sin�1 [�] + 2n�

�
and

(2.16) L2(k; n) :

8>><>>:
1 =

1

�

�
� � sin�1 [�] + 2k�

�
2 =

1

�

�
sin�1 [�] + 2n�

�
:

Clearly � has to be in the unit interval in order to have feasible solution.
Loci L1(k; n) and L2(k; n) for k = 0; 1 and n = 0; 1 are depicted as the red

curves and the blue curves in Figure 4. When k = n = 0; these two loci construct
a hyperbolic curve passing through the point (�=2; �=2) which is the common end
point of L1(0; 0) and L2(0; 0). The curve divides the (1; 2) plane into two regions,
a stable gray region in which all roots of the characteristic equation have strictly
negative real part for (1; 2) and a unstable white region in which the monopoly
equilibrium becomes locally unstable, which can be proved similarly to the non-
symmetric case. Notice that the curve is symmetric with respect to the diagonal

4Hale (1979) determines the geometry of the stability region with ! = 1=2 in a di¤erent way.
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and asymptotic to the lines i = 1, since sin�1(�)=� converges to 1 as � �! 0:
This implies that the monopoly equilibrium is locally asymptotically stable for any
i > 0 if j � 1 for i; j = 1; 2 and i 6= j; in other word, the delays are harmless.
We have the similar results as Proposition 2 in the case of ! = 1=2:

Proposition 2. (1) Given k and n; L1(k; n) and L2(k; n) de�ned on the unit
interval [0; 1] have the same end point. (2) Fixing k and increasing n shift the loci
upward, while �xing n and increasing k shift the loci rightward. (3) Increasing k
and n together shifts the loci along the diagonal line, 1 = 2:

Stability results in the symmetric case are summarized as follows:

Theorem 3. (1) Delays are harmless if i > 0 and j � 1 for i; j = 1; 2 and
i 6= j: (2) L1(0; 0) and L2(0; 0) constitute a stability-switch curve, below which the
monopoly equilibrium is locally asymptotically stable and above which it is locally
unstable.

Figure 4. Divisions of the (1; 2) plane

when ! =
1

2

3. Numerical Simulations

In this section we perform simulations, �rst, to con�rm the analytical results
obtained above and, second, to see how the two delays a¤ect global dynamic be-
havior. Throughout this section we take � = 0:5; a = 3; b = c = 1 under which
 = 1 always implying i = � i for i = 1; 2:

Harmless delays:
We examine harmless delays of 1 and 2 such that i � 0 and j � mj for

i; j = 1; 2 and i 6= j: Two combinations of (1; 2) are selected from this region.
Figure 5(A) illustrates a time trajectory of q(t) for 1 = 1:2 and 2 = 3 which are
ordinates at point A in Figure 3 and so does Figure 5(B) for 1 = 1:2 and 2 = 15;
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which are ordinates of point B. Both trajectories take the same initial function,
�(t) = 0:1 for t � 0, exhibit initial disturbances, which are sooner or later disappear
and �nally converge to the monopoly equilibrium. The initial disturbance with the
larger delay of 2 is larger and more aperiodic than the one with the smaller delay
of 2: The numerical simulations con�rm the analytical result that delay 2 has no
e¤ect on asymptotic behavior of output if 1 � m1 .

(A) 1 = 1:2 and 2 = 3 (B) 1 = 1:2 and 2 = 15

Figure 5. Convergnet trajectories when the delays are harmless

Bifurcation diagram:
To examine global behavior of the unstable equilibrium, we �x the value of 1 and

increase 2 from 0 to 7�=(2(2w� 1)); the upper bound of 2 in Figure 3. For each
value of �2; the delay equation (2.7) is solved to get a time series of q(t); q(t� 1)
and q(t�2) for 1000 � t � 2000: The extreme values (i.e., local maxima and local
minima) of the time series q(t) are plotted against 2. The resultant extremum-
against-delay plot is called a bifurcation diagram with respect to 2 in a continuous
time dynamical system.

Example 1: 1 = 2 and w = 0:8
In this example, 2 increases along the dotted straight line starting at 1 = 2 in

Figure 3. The monopoly equilibrium is stable for smaller values of 2 and loses
stability when 2 crosses the locus of L2(0; 0) from below. However, it regains
stability when 2 arrives at the locus of L1(0; 0): When 2 is large enough to cross
the locus of L2(0; 1) from below, the monopoly equilibrium becomes unstable. This
transition of dynamics is illustrated from a di¤erent view point as a bifurcation
diagram shown in Figure 6(A). The �rst switching to instability from stability
takes place at the left most dotted point, 2 ' 0:646.5 It can be seen that the

5This threshold value is calculated as follows. Using the �rst equation of (2.14) and solving

2 = 1 =
1

�

�
� � sin�1

�
�2 + 2! � 1

2�!

�
+ 2k�

�
for � yields � ' 0:891; and then substituting it to the second equation of (2.14) gives 2 ' 0:646:
Another threshold values are obtained in the same way.
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stable equilibrium point bifurcates to a limit cycle having one maximum and one
minimum and the amplitude of the cycle gets larger �rst and then smaller as 2
increases. After rapid shrinking of the amplitude, instability switches to stability
at the middle dotted point (2 ' 5:441) and thus the trajectory converges to the
monopoly equilibrium. At the right most dotted point (2 ' 7:697) a bifurcation
to a limit cycle occurs and the expansion phase starts again. Since we set the
upper bound of 2 to 14 in this example, the equilibrium does not regain stability
anymore. We will come back later to the bifurcation cascade de�ned for 2 > 14
in Example 5 below. As indicated by the shape of the partition curves in Figure 3,
the alternation between stability and instability could repeat more frequently for
another value of 1; especially, for 1 closer to 

m
1 . Two limit cycles corresponding

to two di¤erent values of 2 (the blue cycle for 2 = 4 and the red cycle 2 = 12)
are illustrated in Figure 6(B).

(A) Bifurcation diagram (B) Phase trajectories

Figure 6. Dynamics in Example 1

Example 2: 1 = 2:3 and w = 0:8

In this example, 1 is taken to be 2:3 and 2 is increased from zero up to
7�=2(2w�1)(' 18:3). As seen in Figure 7(A), limit cycle is born when 2 enters into
the instability region and its amplitude becomes gradually larger as 2 increases.
The cycle rapidly becomes smaller when 2 approaches the stability-switching point.
The equilibrium is stabilized suddenly at the left most dotted point (2 ' 6:638)
and destabilized again at the right most dotted point (2 ' 8:041): The bifurcation
diagram in the second instability phase implies that the number of trajectory�s
extrema increases from two to four and then to eight. Further increases of 2
then decrease this number from eight to four and �nally to two. As a result of
increasing 1 in this example to 2:3 from the value 2:0 of the previous example,
the bifurcation process becomes a little bit complicated and the delay equation
generates a multi-period cycle. In Figure 7(B) a four-period cycle is illustrated for
2 = 11:
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(A) Bifurcation diagram (B) Phase trajectory

Figure 7. Dynamics in Example 2

Example 3: 1 = 2:5 and w = 0:8
We increase the value of 1 to 2:5 and take the upper bound of 2 as 7�=(2(2w�

1)) again. It can be seen in Figure 8(A) that the interval of 2 can be divided into
two instability phases. In the �rst phase in which 2 is less than 7:397, dynamic
behavior is almost the same as in the previous examples, although the monopoly
equilibrium is now already unstable for 2 = 0. Interesting dynamics appears in the
second instability phase in which the monopoly equilibrium undergoes a number-
doubling cascade, a chaotic cascade and a number-halving cascade.6 The birth of
complicated dynamics could be due to a larger value of 1. Figure 8(B) displays a
chaotic process of q(t� �1) and q(t) for 2 = 14:

(A) Bifurcation diagram (B) Phase trajectory

Figure 8. Dynamics in Example 3

6"number" means the number of the extrema.
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Example 4: 1 =
�
2 ' 1:57 and w = 0:5

In this example we change the value of w to 0:5 and examine dynamics in the
case of symmetric weights. Taking 1 = �=2; we increase the value of 2 from
0 to 9�=2 along the dotted vertical line passing through the points, (�=2; 5�=2)
and (�=2; 9�=2) in Figure 4. The monopoly equilibrium is locally asymptotically
stable for 2 � �=2. After it loses stability, there is a number-increasing cascade.
In Figures 9(B) and (C), we display a one-period cycle with two maxima and two
minima and a two-period cycle with three maxima and three minima. As far as
the numerical simulations are concerned, only periodic cycles can be born in the
symmetric case.

(A) Bifurcation diagram (B) Phase trajectory (C) Phase trajectory

Example 5: 1 = 2; ! = 0:8 and 2 > 14
In the last example, we re-examine dynamics of Example 1 for 2 > 14: Figures

10(A) and (C) are continuations of Figure 5(A) for 2 > 14 and Figure 10(B)
combines Figure 10 (A) and Figure 10(C). The only di¤erence between Figures (A)
and (C) is the selection of the initial function for t < 0, q1(t) = 0:1 in the former
and q1(t) = 0:8 in the latter. The bifurcation diagrams are identical for 2 < 14:5;
apparently di¤er for 15 < �2 < 16 and then become identical again for 2 larger
than 16. Figure 10 implies the coexistence of attractors.

(A) �(t) = 0:1 (B) Combining (C) �(t) = 0:8

Figure 10. Dynamics in Example 5
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4. Concluding Remarks

This paper constructed a delay monopoly model in which a monopolistic �rm
was boundedly rational and examined its stability/instability when dynamics was
driven by the gradient process. The paper was divided into three parts. In the
�rst part, we assumed that the monopolistic �rm had one time delay in its pro-
duction and detected the threshold value of the production delay at which stability
switched to instability. In the second part that was the main part of this paper, we
introduced two �xed-time delays into the formation of the expected demand. We
�rst determined the shape of the stability-switch curve that divides the parametric
space of the delays into stable and unstable regions. We then showed that the mo-
nopoly equilibrium undergoes a Hopf bifurcation when the parameter combination
crosses the stability-switch curve. In the �nal part, we speci�ed parameter values
and numerically investigated �ve special cases in detail in which the global behavior
of the equilibrium was illustrated. In particular, it was demonstrated that a one-
dimensional di¤erential equation with two �xed-time delays could generate a wide
variety of dynamics ranging from a limit cycle to chaos with unstable monopoly
equilibrium.

Appendix I

In this Appendix I, we derive relations (2.13) and (2.14) from (2.11) and (2.12).
Moving the second term of (2.11) to the right hand side, squaring both sides and
using the well-known relation cos2 � = 1� sin2 � yield

!2
�
1� sin2(�1)

�
= (1� !)2

�
1� sin2(�2)

�
:

Let x = sin(�1) and y = sin(�2). Then the last equation is written as

!2(1� x2) = (1� !)2(1� y2)
which is arranged to be

(4.1) �!2x2 + (1� !)2y2 = 1� 2!:
Substituting x = sin(�1) and y = sin(�2) into equation (2.12) and solving it for
y yield

(4.2) y =
� � !x
1� ! :

Substituting further (4.2) into (4.1) and solving the resultant equation for x give

(4.3) x =
�2 + 2! � 1

2�!

which is substituted into (4.2) to obtain

(4.4) y =
�2 � 2! + 1
2�(1� !) :

Replacing x of (4.3) with sin(�1) and y of (4.4) with sin(�2); we obtain a para-
meterized curve in the (1; 2) plane:

(4.5) sin(�1) =
�2 + 2! � 1

2�!
and sin(�2) =

�2 � 2! + 1
2�(1� !) :
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In order to have real roots, we need to restrict the range of each of the right hand
sides as

�1 � �2 + 2! � 1
2�!

� 1 and � 1 � �2 � 2! + 1
2�(1� !) � 1:

With � > 0 and 1 > ! � 1=2, these inequality conditions are reduced to
2! � 1 � � � 1:

Since �2+2!� 1 > 0 for � 2 [2!� 1; 1]; solving the �rst equation in (4.5) yields
in�nitely many solutions of 1:

(4.6) 1 =
1

�

�
sin�1

�
�2 + 2! � 1

2�!

�
+ 2k�

�
with k 2 N

or

(4.7) 1 =
1

�

�
� � sin�1

�
�2 + 2! � 1

2�!

�
+ 2`�

�
with ` 2 N

where N is a set of nonnegative integers.
We next determine 2: Since �

2 � 2! + 1 can have both signs, we solve the
second equation of (4.5) in two cases: � �

p
2! � 1 and � <

p
2! � 1. In the �rst

case, �2 � 2! + 1 is nonnegative and thus sin(�2) � 0 while in the second case
�2 � 2! + 1 < 0 and so sin(�2) < 0: Therefore in both cases we have in�nitely
many solutions of 2 in the form

(4.8) 2 =
1

�

�
sin�1

�
�2 � 2! + 1
2�(1� !)

�
+ 2m�

�
with m 2 N

or

(4.9) 2 =
1

�

�
� � sin�1

�
�2 � 2! + 1
2�(1� !)

�
+ 2n�

�
with n 2 N:

Two solutions of 1 and two solutions of 2 produce four combinations. However,
only two combinations of (1; 2) are possible since the sign of cos(�2) must be
di¤erent from the sign of cos(�1) due to (2.11):

if 1 is given by (4.6), then 2 is given by (4.9)

and
if 1 is given by (4.7), then 2 is given by (4.8).

Therefore we have two loci of (1; 2) for each k; n 2 N given in (2.13) and (2.14).

Appendix II

In this Appendix II, we will analyze the dependence of 1 and 2 on � in or-
der to examine the shape of the loci. Consider �rst a segment L1(k; n). Simple
di¤erentiation shows that

@1
@�

����
L1

= � 1
�2

�
sin�1

�
�2+2!�1
2�!

�
+ 2k�

�
+ 1

�
�1r

1�
�
�2+2!�1

2�!

�2 �2�2!+12�2!

= � 1

�2
�1 +

1

�2 cos(�1)
sin(�2)

1� !
!
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We use the �rst equation of (2.13) and (2.11) to obtain

(4.10)
@1
@�

����
L1

= � 1

�2
(�1 + tan(�2))

Since cos(�1) < 0 on L2(k; n); we also have

(4.11)
@1
@�

����
L2

= � 1

�2
(�1 + tan(�2)) :

Similarly

@2
@�

����
L1

= � 1
�2

�
� � sin�1

�
�2�2!+1
2�(1�!)

�
+ 2n�

�
+ 1

�
�1r

1�
�
�2�2!+1
2�(1�!)

�2 �2+2!�12�(1�!)

= � 1

�2
�2 +

1

�2 cos(�2)
sin(�1)

!

1� !
Therefore we have

(4.12)
@2
@�

����
L1

= � 1

�2
(�2 + tan(�1))

and

(4.13)
@2
@�

����
L2

= � 1

�2
(�2 + tan(�1)) ;

since cos(�2) > 0 on L2(k; n):
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