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Abstract

In this paper, we construct a three-country model with two govern-
ments and two firms and consider dynamic behavior of the sequential sub-
sidy game in which the governments determine their optimal trade policies
and then the firms determine their optimal outputs. We first show the
existence of an optimal trade policy under realistic conditions. In the case
of symmetric firms, the governments adopt periodic mixed trade policy
(i.e., one government gives subsidy and the other levies tax in one period
and then the governments interchange their policies in the next period) if
the adjustment is naive, and the governments adopt a stable mixed policy
if adaptive. In the case of asymmetric firms, a firm receives subsidy if its
cost is lower and pays tax if higher. If the Cournot output point under
the optimal subsidy is locally stable, then its dynamics can be periodic
which is synchronized with the periodic trade policy. If it is locally un-
stable, then complex dynamics involving chaos emerges regardless of the
cost difference.

1 Introduction
Markets become imperfectly competitive due to many factors such as the small
number of firms, the differentiated goods, the scale of economics, etc. In such
an imperfectly competitive international market, the governments may be mo-
tivated to introduce trade policies like tariff, export subsidy and tax to increase
national welfare of their countries. It has been demonstrated that an increase in
a domestic export subsidy raises the domestic firm’s output and its profit when
the firms compete in a Cournot way (Brander and Spencer (1985)). It has been
also demonstrated that an export tax can be optimal when the firms compete
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in a Bertrand way (Eaton and Grossman (1986)). It is now well-known that
the source of this sharp contrast comes from the difference in the assumption
on the firms’ strategic behavior (that is, the goods are strategic substitutes or
strategic complements). It is also well-known that this behavioral difference
relates to the curvature and the elasticity of the demand function. Recently,
constructing a simplified version of the three-country model with two firms and
two governments, Bandyopadhyay (1997) shows, among others, the following
clear-cut results when the demand is unit-elastic:

(1) When the foreign government is passive, the optimal trade policy of the
active domestic government is free trade if the production costs of the two
firms are identical, an export subsidy if the home firm has lower cost and
an export tax otherwise.

(2) When both governments are active, a continuum of policy equilibria exist if
the production costs are identical and no policy equilibrium exists if they
are different.

As a consequence of the second result, no dynamic consideration has been
provided yet. In particular, it is not known yet how the optimal policy as well as
the optimal outputs change over time and what kinds of changes might occur.
The main purpose of this paper is to consider dynamics of the optimal trade
policy and the associated optimal outputs under unit-elastic demand and to
show that rich dynamics can be born when natural constraints are imposed on
the government’s policy selections. This paper complements Bandyopadhyay
(1997) from a dynamic point of view. It is a continuation of Matsumoto and
Serizawa (2007) who focus mainly on the comparative statistic analysis of the
similar model (i.e., the effects on the optimal outputs caused by a change in
the trade policy of the domestic government). The dynamic model of outputs
to be considered in this paper resembles nonlinear dynamic duopoly models,
which have been extensively studies for the last twenty years. Comprehensive
summary of the earlier work has been presented in Puu (2003). More recent
developments on this field are given in Bischi, et al. (2009). This paper also
aims to apply the theoretical results obtained there to the dynamic analysis in
the framework of international economics.
The paper is organized as follows. Section 2 presents a variant of the three-

country model in which both governments are active. Section 3 considers policy
dynamics and Section 4 analyzes output dynamics with the optimal trade policy.
Section 5 gives concluding remarks.

2 Model
The model presented below is a variant of the three-country model. There
are two countries with one firm in each of them, and these firms export their
product to a third country. The outputs of the firms are denoted by x and y, and
constant marginal costs of the two firms are denoted by c1 and c2, respectively.
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Competition in the third country is modeled through a two-stage game. At
the first stage, the governments hosting their firms choose subsidy rates, si for
i = 1, 2, in order to maximize their welfare, taking the optimal behavior of the
firms as given. At the second stage, the firms employ the quantity competition in
a Cournot way and choose profit maximizing outputs, taking their governments’
trade policies as given. Optimal subsides and optimal outputs are backwardly
determined. In particular, we solve the profit maximization problems of the
firms, given the levels of the subsidy in Section 2.1, then examine the welfare
maximization problems of the governments, given the optimal behavior of the
firms and determine the optimal levels of the subsidy in Section 2.2. In order
to get a complete description of the dynamics of the subsidy game in the latter
part of the paper, we will specify the best reply functions of the firms and those
of the governments in this section.

2.1 Profit Maximization

Let the inverse demand function be unit-elastic,

P =
1

Q
,

where Q is the total output, Q = x + y.1 At the second stage in which the
governments’ subsidies are given, firm x and firm y choose outputs to maximize
their profits defined by

π1 = (P − (c1 − s1))x,
and

π2 = (P − (c2 − s2))y.
The first-order conditions of the profit maximization are given by

∂π1
∂x

=
y

(x+ y)2
− cx = 0,

and
∂π2
∂y

=
x

(x+ y)2
− cy = 0,

where cx = c1 − s1 and cy = c2 − s2 for notational simplicity.2 We call the
production cost including the subsidy an actual cost. Although we will formally
show later that the actual costs are non-negative, we suppose for the time being
that subsidies are given as cx > 0 and cy > 0. From the first-order conditions,
the explicit forms of the firms’ best reply functions are derived as

r̄1(y) =

r
y

cx
− y (1)

1See Matsumoto and Szidarovszky (2009) that studies the same model with different de-
mand, P = Q−λ and λ 6= 1.

2 It can be checked that the second-order conditions are satisfied for any x and y that solve
the first-order conditions.
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and

r̄2(x) =

r
x

cy
− x. (2)

An intersection of the best reply functions determines a Cournot equilibrium at
which we can solve for the output quantities:

xC(s1, s2) =
cy

(cx + cy)2
(3)

and
yC(s1, s2) =

cx
(cx + cy)2

, (4)

where superscript C is attached to variables associated with the Cournot point.3

The Cournot outputs in (3) and (4) are substituted into the profit functions to
obtain the Cournot profits:

πC1 (s1, s2) =

µ
cy

cx + cy

¶2
(5)

and

πC2 (s1, s2) =

µ
cx

cx + cy

¶2
. (6)

Dividing (3) by (4) and (5) by (6) yields, after arranging terms, the ratios of
outputs and profits,

xC

yC
=
cy
cx
R 1 according to cy R cx,

and
πCx
πCy

=

µ
xC

yC

¶2
R 1 according to xC R yC .

These inequalities imply the following results on the optimal behavior of the
firms: The firm with the lower actual cost produces more output and earns
more profit than the firm with the higher actual cost.

2.2 Welfare Maximization

At the first stage of the sequential game, the governments determine the optimal
levels of the subsidy so as to maximize the national welfare defined by

W1(s1, s2) = πC1 (s1, s2)− s1xC(s1, s2), (7)

and
W2(s2, s1) = πC2 (s2, s1)− s2yC(s2, s1). (8)

3Since r̄1(y) and r̄2(x) take mound-shaped curves starting at the origin, the curves inter-
sects twice at (0, 0) and (xC , yC). The former is the trivial equilibrium point and the latter is
the non-trivial equilibrium point. Our concern is on the non-trivial point and thus no further
considerations are given to the trivial equilibrium point.
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We derive the specific forms of the best reply functions of the governments and
consider their characteristics in the policy space. Substituting xC , yC , QC =
xC + yC and PC = (QC)−1 into (7) and (8) yields the explicit forms of the
welfare functions of the governments,

W1(s1, s2) =
(cy − s1) cy
(cx + cy)2

, (9)

and

W2(s2, s1) =
(cx − s2) cx
(cx + cy)2

. (10)

The government of country 1 maximizes W1(s1, s2) with respect to s1 and the
government of country 2 maximizes W2(s2, s1) with respect to s2. We can solve
the first-order conditions to obtain the best reply functions:

r1(s2) = −s2 + (c2 − c1) and r2(s1) = −s1 + (c1 − c2), (11)

where the second-order conditions are satisfied. These functions are essentially
the same as those derived by Bandyopadhyay (1997). It is apparent that there
is a continuum of optimal subsidies s1 + s2 = 0 for symmetric firms (c1 = c2)
and no equilibrium exists for asymmetric firms (c1 6= c2).
To avoid the indeterminacy of the optimal policy equilibrium in the case

of asymmetric firms, we impose the following external upper and lower bound
constraints on the levels of the optimal policy, si, taking account of the fact
that the governments behave with control. The first constraint reflects the fact
that the governments have the upper bound of the subsidy, due to their budget
constraints. The second constraint takes account of the fact that the government
does not levy such a strong export tax that might result in its firm to exit the
market. Intuitively speaking, in choosing their policies, the governments neither
take care of all the production costs nor take all of the profits.

Assumption 1. sLi ≤ si ≤ sUi for i = 1, 2 where sUi is the upper bound of the
subsidy level defined by sUi = ci and sLi < 0 is the lower bound of the
subsidy level, which shows the upper bound of the export tax.

Under Assumption 1, the best reply function of the government of country
1 becomes piecewise linear with three segments:⎧⎨⎩ sU1 s2 < s

u
2 ,

r1(s2) su2 ≤ s2 ≤ s`2,
sL1 s2 > s

`
2,

where su2 and s
`
2 are defined by r1(s

u
2 ) = sU1 and r1(s

`
2) = sL1 , respectively. In

the same way, the best reply function of the government of country 2 is derived
to be piecewise-linear with three segments:⎧⎨⎩ sU2 s1 < s

u
1 ,

r2(s1) su1 ≤ s1 ≤ s`1,
sL2 s1 > s

`
1,
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where su1 and s
`
1 > 0 are defined by r2(s

u
1) = s

U
2 and r2(s

`
1) = s

L
2 , respectively.

An intersection of these modified best reply functions is a Nash equilibrium
of the trade policy, (se1, s

e
2). First of all, we should discuss the determination of

the optimal trade policy in the case where ci < cj and sLj ≤ suj . By definition
of the piecewise linear best replies, it is clear that the optimal subsidy policy of
firm i is sei = s

U
i . From (3), (4) and Assumption 1 (i.e., sUi = ci), the optimal

output of firm 2 is zero if c1 < c2 and sL2 ≤ su2 whereas the optimal output
of firm 1 is zero if c2 < c1 and sL1 ≤ su1 . In both cases one of the firms will
export nothing to the third country and the competition in the third country
will be terminated. To confine our attention to the third-country model with
active competition, we assume that suj and s

L
j are given such that the following

inequality holds.

Assumption 2. sLj > s
u
j for j = 1, 2.

Notice that suj = cj − 2ci and s`j = cj − ci − sLi , so clearly suj < s`j for both
firms. Assumption 2 requires that for j = 1, 2, sLj > s

u
j . In order to guarantee

the existence of negative sLj bounds, we make the additional assumption:

Assumption 3. cj < 2ci for j = 1, 2 and i 6= j.

Without losing generality, we can assume that in the case of asymmetric
firms, ci < cj . First we show that s`i < s

U
i . Since s

L
j > cj−2ci > cj−2cj = −cj ,

we have
s`i = ci − cj − sLj < ci − cj − (−cj) = ci = sUi .

However no such comparison can be made between sLi and s
`
i . In order to guar-

antee that sLi < s
`
i , we make the following assumption:

Assumption 4. sLi + s
L
j < ci − cj .

Notice that this assumption holds if the marginal costs ci and cj are close
to each other. The best reply functions are shown in Figure 1, and from it we
can conclude that the unique equilibrium is

sei = cj − ci − sLj and sej = sLj (12)

Hence we have the following:

Theorem 1 Under Assumptions 1,2,3 and 4, if the firms are symmetric (i.e.,
c1 = c2), then there are infinitely many equilibria on the line si = −sj whereas
if the firms are asymmetric with ci < cj, then sei = −sLj + (cj − ci) > 0 and
sej = s

L
j < 0.
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Determination of the optimal policy under ci < cj

3 Dynamics Analysis of Trade Policy
Theorem 1 guarantees the existence of a unique optimal trade policy. In this
section, we consider the dynamic behavior of the trade policy in the policy space
(s1, s2). To this end, we assume the following discrete time dynamic process of
the policy selection: ⎧⎨⎩ s01 = (1− α1)s1 + α1R1(s2),

s02 = (1− α2)s2 + α2R2(s1),
(13)

where 0 denotes the unit-time advancement operator, αi is the adjustment co-
efficient with 0 < αi ≤ 1 and R1(s2) and R2(s1) are the best reply functions
restricted to their intervals, [sL2 , s

U
2 ] and [s

L
1 , s

U
1 ],

R1(s2) =

⎧⎨⎩ sL1 for s
`
2 ≤ s2 ≤ sU2 ,

r1(s2) for sL2 ≤ s2 < s`2,

and

R2(s1) =

⎧⎨⎩ sL2 for s
`
1 ≤ s1 ≤ sU1 ,

r2(s1) for sL1 ≤ s1 < s`1,

3.1 Symmetric firms: c1 = c2
In the case of identical costs, we first perform some numerical simulations to
examine the dynamic behavior of the governments, second, confirm analytically
that the numerical results are robust, and finally summarize these results in
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Theorems 2 and 3. The numerical simulations are presented in Figure 2 where
the policy is naively adjusted (i.e., αi = 1). The other case is given in Figure 3
where the policy is adaptively adjusted (i.e., αi < 1).
The feasible policy space is defined by the rectangle S = [sL2 , s

U
2 ]× [sL1 , sU1 ],

which is divided into distinctive four parts by the horizontal and vertical lines,
s1 = s

`
1 and s2 = s

`
2,

SI = {(s1, s2) ∈ S | s`1 ≤ s1 and s`2 ≤ s2},

SII = {(s1, s2) ∈ S | s1 < s`1 and s`2 ≤ s2},

SIII = {(s1, s2) ∈ S | s`1 ≤ s1 and s2 < s`2},

SIV = {(s1, s2) ∈ S | s1 < s`1 and s2 < s`2}.

In Figures 2(A) and 3(A), we select three initial points denoted as I1, I2 and
I3 in SI , SII and SIII , respectively and depict the three trajectories starting
from these points. In Figures 2(B) and 3(B), which are enlargements of the
region SIV , we also select three initial points denoted as i1, i2 and i3 inside
SIV and depict three trajectories starting from these points. Simulations in
Figure 2(A) indicate that the trajectories converge to period-2 cycles when the
trade policies are naively adjusted. The two periodic points are symmetric with
respect to the line s1 + s2 = 0. On the other hand, the simulations shown in
Figure 3(A) indicate that the trajectories converge to stationary points on the
line s1 + s2 = 0 when the trade policies are adaptively adjusted.
The first result on policy dynamics is summarized as follows:

Theorem 2 If the firms are symmetric, then the naively adjusted process of
the export trade policy (i.e., (13) with α1 = α2 = 1) gives rise to infinitely
many stable period-2 cycles, and a trajectory starting from a point other than a
stationary point converges to one of these cycles.

Proof. We prove this statement with four steps. (I): It can be seen that
R1(s2) = sL1 and R2(s1) = sL2 for all (s1, s2) ∈ SI . By the identical cost as-
sumption, R1(sL2 ) = s

`
1 and R2(s

L
1 ) = s

`
2 whereas R1(s

`
2) = s

L
1 and R2(s

`
1) = s

L
2

by the definitions of s`2 and s
`
1. Thus any trajectory starting at a point inside

S1 converges to the period-2 cycle with periodic points, (sL1 , s
L
2 ) and (s

`
1, s

`
2).

The trajectory with the initial point I1 in Figure 3(A) is an example of this
case. (II): Next take an initial point (sII1 , s

II
2 ) ∈ SII . Then the naive adjust-

ment process conveys the point to R1(sII2 ) = s
L
1 and R2(s

II
1 ) = −sII2 and then

R1(−sII2 ) = sII1 and R2(sL1 ) = s
`
2, that are bounced back to the point (s

L
1 ,−sII2 ).

Thus any trajectory starting at a point (sII1 , s
II
2 ) ∈ SII converges to the period-

2 cycle with periodic points (sL1 ,−sII2 ) and (sII1 , s`2). The trajectory with the
initial point I2 is an example of this case. (III): In the same way, we can show
that a trajectory starting at a point (sIII1 , sIII2 ) ∈ SIII converges to the period-2
cycle with periodic points, (−sIII2 , sL2 ) and (s

`
1, s

III
2 ). The trajectory with the

initial point I3 is an example of this case. (IV): We finally consider periodic
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behavior in Figure 3(B) where the initial points are selected inside of SIV . Since
the adjustment process in SIV is given by

s01 = −s2 and s02 = s1,

the governments expect the symmetric point (−sIV1 ,−sIV2 ) with respect to the
s1+s2 = 0 locus for any initial point (sIV1 , sIV2 ). Taking (−sIV1 ,−sIV2 ) as given,
the government expect (sIV1 , sIV2 ) in the next time period. Thus any point
(sIV1 , sIV2 ) ∈ SIV and its symmetric point (−sIV1 ,−sIV2 ) ∈ SIV are period-2
points. Three period-2 cycles depicted in Figure 2(B) are examples of this case.

(A) Convergence to SIV (B) Period-2 cycles in SIV

Figure 2. Coexistence of period-2 cycles under naive expectation

We say that the governments take the pure policy if s1s2 > 0, the mixed
policy if s1s2 < 0, and the one-side free trade policy if s1s2 = 0 and si 6= 0
for i = 1, 2. Furthermore, we say that the governments take a pure subsidy
policy if s1 > 0 and s2 > 0 and a pure tax policy if s1 < 0 and s2 < 0. In the
mixed policy, one government pays subsidy and the other government charges
tax. Figures 2(A) and 2(B) are divided into four rectangles by the horizontal
and vertical axes. The rectangles on the top-right and the bottom-left represent
the set of points which generate pure policy (i.e., the pure subsidy policy and
the pure tax policy). On the other hand the rectangles on the top-left and
on the bottom-right represent the set of points which generate mixed policy.
If a point is on the either axis, it represents the one-side free trade in which
one government gives no subsidy and charges no tax and the other government
either gives subsidy or charges tax.
Let us denote the period-2 points of the trade policy by SA = (sA1 , s

A
2 ) and

SB = (sB1 , s
B
2 ). The period-2 cycle means that if the governments expect S

A,
then SB is realized; and if the governments expect SB in the next period, then
SA is realized. Let us take the case of the pure trade policy. If both governments
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expect that their competitors take the same policy, for example export subsidies
sA1 > 0 and s

A
2 > 0, then in the next period the process becomes the opposite

pure policy, that is, export taxes sB1 < 0 and sB2 < 0. So the governments
alternate between the pure subsidy policy and the pure tax policy. In contrast
to this, if both governments expect that their competitors take the mixed policy,
for example, government 1 adopts the subsidy policy sA1 > 0 while government
2 takes the tax policy sA2 < 0, then, in the next time period the process becomes
the subsidy with sB1 = −sA2 for government 1 and the tax with sB2 = −sA1 for
government 2. The governments therefore alternate between the mixed policies
in which the values and the signs of the subsidy and the tax are interchanged.
We summarize these results as a corollary of Theorem 2:

Corollary 1 The trade policy has an initial point dependency: (1) If both
governments expect that their competitors adopt the subsidy policy, then
the tax policy is realized, and vice versa. (2) If a mixed policy is expected,
then the opposite mixed policy is realized where the realized point of the
subsidy or the tax is mirror image of the expected point with respect to the
-45 ◦ degree line.

The optimal outputs associated to these periodic points are obtained by
substituting the periodic points into (3) and (4): for k = A,B,

xCk =
c2 − sk2

((c1 − sk1) + (c2 − sk2))2
and yCk =

c1 − sk1
((c1 − sk1) + (c2 − sk2))2

. (14)

We now assume that the policy is adaptively adjusted (i.e., αi < 1) and
the adjustment coefficients are the same (i.e., α1 = α2 = α) for the sake of
analytical simplicity. As can be seen in Figure 3(A), any trajectory with an
initial point inside SI ∪ SII ∪ SIII sooner or latter enters SIV . It is therefore
sufficient for our purpose to consider the dynamics observed within SIV . Our
second result on policy dynamics is summarized as follows:

Theorem 3 If the firms are symmetric, then the symmetric adaptive adjust-
ment process of the export trade policy (i.e., (13) with α1 = α2 < 1) is stable
and converges to a point on the line s1 + s2 = 0.

Proof. Let us start with an initial point (s01, s02) ∈ SIV . The optimal policy at
the next period is determined by the adaptively adjusted process,

s
0

1 = (1− α)s01 + α(−s02),

s
0

2 = (1− α)s02 + α(−s01).

The line passing through these two points, (s01, s
0
2) and (s

0
1, s

0
2), is written as

s2 = as1 + b where the slope a and the vertical intercept b are

a =
s02 − s02
s01 − s01

= 1 and b = s02 − s01.
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It is clear that the adaptive process maps the optimal policy (s01, s
0
2) to a point

on the s2 = as1 + b locus. That is, the trajectories of the optimal policies are
controlled by

s
0

1 = (1− α)s1 + α(−s1 − b),

s
0

2 = (1− α)s2 + α(−s2 + b).
The adjusted processes are independent and governed by 1D difference equations
with slopes less than unity in absolute value,¯̄̄̄

¯ds
0

i

dsi

¯̄̄̄
¯ = |1− 2α| < 1.

Hence the adjustment process is stable and a trajectory converges oscillating to
the stationary state associated with the initial point (s01, s

0
2),

se1 = −
s02 − s01
2

and se2 =
s02 − s01
2

which is the intersection of the s2 = −s1 curve and the s2 = as1 + b curve. It
is clear that se1 R 0 and se2 Q 0 if s01 R 0 and s02 Q 0.

(A) Convergence to SIV (B) Stable points in SIV

Figure 3. Coexistence of stable stationary points under adaptive expectation

The stationary point (se1, s
e
2) is on the line s1 + s2 = 0. Figure 3(B) shows

that the trajectory starting from point i1 converges to the origin, se1 = s
e
2 = 0,

the trajectory starting from point i2 converges to point α with sα1 < 0, s
α
2 > 0

and sα1 = −sα2 , and the trajectory starting from i3 converges to point β with
sβ1 > 0, s

β
2 < 0 and s

β
1 = −s

β
2 . This observation leads us to Corollary 2.

Corollary 2 The optimal trade policy has an initial point dependency: if both
governments start with the same initial expectations, then the free trade is
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materialized (i.e., se1 = s
e
2 = 0); If they start with different initial expecta-

tions (i.e., s01 6= s02), then the symmetric mixed trade policy is materialized:

se1 = −
s02 − s01
2

and se2 = −se1.

The corresponding stationary output values are obtained by substituting se1
and se2 into (3) and (4),

xC ==
c2 − se2

((c1 − se1) + (c2 − se2))2
and yC =

c1 − se1
((c1 − se1) + (c2 − se2))2

. (15)

3.2 Asymmetric firms: c1 6= c2
It is clear from Figure 1 that the optimal policy is stable in the policy space if
the firms are asymmetric, regardless of whether the policy is naively or adap-
tively adjusted. It is also clear that the optimal trade policy is mixed, which is
summarized as follows:

Theorem 4 If the firms are asymmetric, then the firm with lower production
cost receives an export subsidy and the firm with higher production cost pays an
export tax.

The optimal output values are determined by substituting the optimal sub-
sidies (12) into relations (3) and (4).

4 Dynamic Analysis of Output
In considering the output dynamics in the international subsidy game, we lag
the output variables in (1) and (2) and construct the output adjustment process
with adaptive expectations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0 = (1− β1)x+ β1

µr
y

c1 − s1
− y

¶
,

y0 = (1− β2)y + β2

µr
x

c2 − s2
− x

¶
,

(16)

where βi is the adjustment coefficient satisfying 0 < βi ≤ 1, and s1 and s2 are
governed by (13). As mentioned in the Introduction, the dynamic structure of
system (16) resembles that of the nonlinear Cournot models extensively studied
by Puu (2003) and Bischi et al. (2009) in which different subjects such as the
emergence of complex dynamics involving chaos, multistability, the structure of
the basin of attraction, delay dynamics, etc., are discussed. We skip the detailed
examinations of system (16) and will apply these results to our dynamic analysis.
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4.1 Symmetric firms: c1 = c2
As a benchmark, we take β1 = β2 = 1 and consider the output dynamics under
naive expectation. Let us denote the actual cost ratio by

k =
c1 − s1
c2 − s2

.

It is already shown in Puu (2003) that loss of stability occurs when the actual
cost ratio satisfies the following equation,4

(k − 1)2
4k

= 1 (17)

where the smaller solution is 3 − 2
√
2(' 0.172) and the larger solution is 3 +

2
√
2(' 5.828)̇. It follows that if the actual cost ratio stays within the interval

bounded by the smaller and larger solutions, then the Cournot point is stable.
In the same way if the actual cost ratio falls outside the interval, it becomes
locally unstable. We assume the stability of the Cournot point and examine the
effects caused by the policy on output dynamics for a while. It is also shown in
Puu (2003) that the dynamics is symmetric with respect to k = 1. In order to
get new results, we confine our consideration to the case of c1 < c2 and assume
that c1 = 1 throughout the analysis for the sake of analytical convenience. It
can be checked that the nonnegativity of the output trajectories is guaranteed
when the actual cost ratio is at least 4/25(= 0.16).
If there is no policy lag in the sense that the firms receive the subsidies from

the governments without any time delays, and the policy is naively adjusted,
then the dynamics of the outputs and the subsidies are controlled by the dynamic
equations ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 =

r
y

c1 − s1
− y,

y0 =

r
x

c2 − s2
− x,

s01 = −s2,

s02 = −s1,

(18)

where the domain of the policy dynamics is restricted to the rectangle, [sL1 , s
`
1]×

[sL2 , s
`
2] for analytical simplicity.

5 According to Theorem 2, the optimal trade
policy oscillates between two values, SA = (sA1 , s

A
2 ) and S

B = (sB1 , s
B
2 ) where

sA1 = −sB2 and sA2 = −sB1 . We have already solved for the output quantities at
4This equation is obtained by setting the product of the derivatives of the best reply

functions, r̄1(y) and r̄2(x), evaluated at the Cournot point equal to −1.
5As can be seen in Figure 2(A), any trajectory starting at a point outside SIV will enter

SIV after several iterations.
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each periodic point given in (14). Indeed, the Cournot outputs at point SA are

xCA =
c2 − sA2

((c1 − sA1 ) + (c2 − sA2 ))2
and yCA =

c1 − sA1
((c1 − sA1 ) + (c2 − sA2 ))2

and the Cournot outputs at point SB are

xCB =
c2 − sB2

((c1 − sB1 ) + (c2 − sB2 ))2
and yCB =

c1 − sB1
((c1 − sB1 ) + (c2 − sB2 ))2

.

Since the output dynamics depends on the policy dynamics but not vice
versa, we can be fairly certain that the output dynamics gives rise to a periodic
cycle when the trade policy has a period-2 cycle. We specify the parameter
values as c1 = c2 = 1, SA = (0.64,−0.4) and SB = (0.4,−0.64) and perform
simulations. First of all, it can be pointed out that the output equilibria, CA =
(xCA, yCA) and CB = (xCB , yCB), are locally asymptotically stable under these
specifications if the trade policy is fixed since the cost ratios are greater than
3− 2

√
2,

kA =
c1 − sA1
c2 − sA2

' 0.366 and kB = c1 − sB1
c2 − sB2

' 0.257.

However, the trade policy is not fixed, it is switched from one periodic point
to the other in every period. Figure 4 reveals that the output dynamics is
represented by a period-2 cycle, which is synchronized with the period-2 cycle of
the optimal subsidy. Figure 4(A) shows a return map. The best reply functions
of firm 2 are illustrated as mound-shaped curves and the inner curve is shifted
to the outer curve when the policy is switched from SA to SB. In the same way,
the best reply functions of firm 1 are illustrated as two upward sloping curves
and the shift from the left curve to the right is caused by the policy switching
from SA to SB. Here Ca and Cb are the two periodic points of the output cycle.
Figure 4(B) depicts the time trajectory of output y. Contrary to our intuition,
the periodic points of the output cycle are not the Cournot points denoted by
CA and CB in Figure 4(A). The reason is that dynamic equations of the outputs
are switched from (x0, y0) = (r̄A1 (y), r̄

A
2 (x)) with S

A to (x0, y0) = (r̄B1 (y), r̄
B
2 (x))

with SB at every iteration step where

r̄A1 (y) =

r
y

c1 − sA1
− y and r̄A2 (x) =

r
x

c2 − sA2
− x

and

r̄B1 (y) =

r
y

c1 − sB1
− y and r̄B2 (x) =

r
x

c2 − sB2
− x.

The periodic points Ca = (xa, ya) and Cb = (xb, yb) are the fixed points of the
composite functions of r̄Ai and r̄

B
i for i = 1, 2,

xa = r̄A1 (r̄
B
2 (x

a)), ya = r̄A2 (r̄
B
1 (y

a)), xb = r̄B1 (r̄
A
2 (x

b)) and yb = r̄B2 (r̄
A
1 (y

b)).

We summarize these results as follows:
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Theorem 5 If the firms are symmetric, the trade policies and the outputs are
naively adjusted and there is no policy lag, then the 4D dynamic system (18)
gives rise to a period-2 cycle of the outputs which is synchronized with the period-
2 cycle of the trade policies.

(A) Return map (B) Time trajectory

Figure 4. Birth of a period-2 cycle

We has assumed so far that there is no time lag in implementing the trade
policy. However, the government policy usually works with a time lag since there
is an inevitable delay between the subsidy decision and the actual payment which
is the result of the political process. To examine the effect caused by the policy
delay, a 10-period lag is introduced such that the trade policy is switched at
every 10 periods. Simulation results are illustrated in Figure 5 where we use the
same parameter specifications with the only difference that the length of lag is
changed to 10 from zero. In Figures 5(A) and 5(B), the output dynamics shows
the cyclic behavior in the following way: it fluctuates around xCA for 10 periods
and then around xCB for the next 10 periods, after which it jumps back to the
original cyclic behavior. We have already seen that xCA and xCB are locally
stable if the trade policy is fixed. The cyclic behavior around each stationary
point is a dumping oscillation. When the policy is changed in the middle of the
converging process, the trajectory changes its direction and starts approaching
a new equilibrium. As a result, a new dumping oscillation is born, which is
again interrupted before arriving at the equilibrium by a change of the policy.
A n-period time lag of the trade policy creates a period-2n cycle. It fluctuates
around one stationary point for n periods and then jumps to a neighborhood
of the other stationary point when the policy is changed. Then it fluctuates
around the new stationary state for the next n periods and jumps back to the
previous neighborhood when the policy is changed again. This recursive process
repeats itself. Dynamics with time lag can be summarized as follows:

Theorem 6 If the firms are symmetric, the policies and the outputs are naively
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adjusted and there exists a n-period policy lag, then the 4D dynamic system gives
rise to a period-2 cycle of the trade policy and a period-2n cycle of the output.

(A) Return map (B) Time trajectory
Figure 5. Birth of a period-20 cycle

If the policy is naively adjusted and the output is adaptively adjusted, then
essentially the same dynamics will be observed. In other words, as far as the
policy is periodically changed, the output dynamics is affected by these pol-
icy switching and exhibits periodic behavior no matter which formation of the
expectations is selected.
If the policy is adaptively adjusted, then the policy adjustment process con-

verges to the stationary point according to Theorem 2. We have, however,
qualitatively different output dynamics, as will be seen shortly. In this case we
can suppose without loss of generality that the dynamic process of the trade
policy is rapid and the firms receive the stationary values of the trade policy
from the beginning of the output dynamic process. This assumption reduces
the 4D dynamic system to the 2D output dynamic system (16) with s1 = se1,
s2 = s

e
2 and s

e
1 = −se2: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0 =

r
y

c+ se2
− y,

y0 =

r
x

c− se2
− x,

(19)

where c = c1 = c2.
6 The stability of system (19) depends on the actual cost

ratio,

k =
c+ se2
c− se2

(20)

6 It is possible to construct the dynamic system in terms of se1. However, the results become
qualitatively the same.
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Given c, k increases from zero to infinity as se2 increases from −c to c. In the
linear model, local instability implies global instability. However this is not nec-
essarily the case with nonlinear models because the nonlinearities may prevent
unstable trajectories from globally diverging. We restrict our analysis to the
unstable case, henceforth, to examine what dynamics the nonlinear output sys-
tem can generate. The stability of the output is violated if k ≤ 3−2

√
2 and the

output trajectories are non-negative as far as k ≥ 4/25.Therefore, the output
stationary state becomes locally unstable but the trajectories are nonnegative
if

−21
29
c < se2 < −

√
2

2
c. (21)

Here k = 3−2
√
2 if se2 is equal to this upper bound which is the threshold of the

loss of stability and will be called the instability value and k = 4/25 if se2 is equal
to this lower bound, which is the threshold of loss of nonnegativity and will be
called the nonnegativity value. When se2 decreases from the instability value
to the nonnegativity value in the interval, the stationary state is destabilized
and goes to chaos through a period-doubling cascade as shown in Figure 6. We
summarize this result as follows:

Lemma 1. If the firms are symmetric and the trade policy is adaptively ad-
justed, then the naively adjusted output exhibits various dynamics ranging
from a period-2 cycle to chaotic fluctuations, depending on the value of
se2 in the interval bounded by the instability value and the nonnegativity
value.

Figure 6. One-parameter bifurcation diagram with respect to se2.

Now we replace the naive expectation formation with the adaptive expec-
tation formation by taking β1 < 1 and β2 < 1. The output dynamic system

17



is ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x0 = (1− β1)x+ β1

µr
y

c+ se2
− y

¶
,

y0 = (1− β2)y + β2

µr
x

c− se2
− x

¶
.

(22)

It is also shown in Puu (2003) that loss of stability under the adaptive ex-
pectation occurs when the cost ratio and the speeds of adjustment satisfy the
following relation:

(k − 1)2
4k

=
1

β1
+
1

β2
− 1 (23)

under which the determinant of the Jacobian matrix of the dynamic system
(22) becomes unity. To examine what dynamics can be generated, we simulate
system (22) when the adjustment speeds are identical (β1 = β2 = β). Taking the
same parameter specifications as in Figure 6, Figure 7 shows the two-parameter
bifurcation diagram in which the horizontal coordinate is the level of the optimal
subsidy to firm 2 (i.e., se2) and the vertical one is the identical adjustment speed
(i.e., β). Solving (23) for β and substituting (20) yields the partition curve of
the parameter space (se2,β),

β =
2(c− se2)(c+ se2)

c2
. (24)

Given c, for all (se1,β) under the partition curve, the stability condition is satis-
fied and this stable region is colored in red in Figure 7. For all (se1,β) above the
curve, the stability condition is violated but the nonlinearities of the dynamics
system prevent diverging trajectories. The different colors of the regions cor-
respond to the different periods of periodic cycles up to period 16. The gray
regions indicate that the period of the cycle is larger than 16 or chaos emerges.
This is summarize as:

Lemma 2. If the firms are symmetric and the trade policy is adaptively and
rapidly adjusted, then the adaptively adjusted output exhibits various dy-
namics ranging from a period-2 cycle to chaotic fluctuations, depending
on the values of (se2,β).
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Figure 7. Two-parameter bifurcation diagaram

4.2 Asymmetric firms: c1 6= c2
We now turn our attention to the asymmetric firms with c1 < c2. We have
already seen that the dynamic process of the trade policy is stable and converges
to the optimal points given in (12),

se1 = −sL2 + (c2 − c1) and se2 = sL2 ,

where 0 > sL2 > c2 − 2c1 due to Assumption 2. The corresponding optimal
outputs are obtained by substituting these optimal subsidies into the expressions
in (15),

xC =
c2 − sL2
4c21

and yC =
(2c1 − c2) + sL2

4c21
.

If we assume that the implementation of the trade policy has no time lags, then
the output dynamic system with β1 = β2 = 1 is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0 =

r
y

c1 − (−sL2 + c2 − c1)
− y,

y0 =

r
x

c2 − sL2
− x.

(25)

Substituting se1 and s
e
2 into the actual cost ratio yields

k =
2c1 − c2 + sL2
c2 − sL2

. (26)

It follows that, given c1 and c2, the actual cost ratio decreases to zero from
(2c1 − c2)/c2 > 0 if sL2 decreases to its lower bound s

u
2 = −(2c1 − c2) from
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zero. Depending on the value of sL2 , the output dynamics can be destabilized.
Furthermore, due to the nonlinearities of (16), the output dynamics can exhibit
a rich dynamics if sL2 is in the interval

c2 −
50

29
c1 < s

L
2 < c2 −

1

2−
√
2
c1. (27)

The upper bound value and the lower bound value of sL2 make the actual cost
ratio equal to 3− 2

√
2 and 4/25, respectively.

When the symmetric adaptive expectation formation is adopted (i.e., β1 =
β2 = β < 1), the output dynamic system is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x0 = (1− β)x+ β

Ãr
y

c1 − (−sL2 + c2 − c1)
− y

!
,

y0 = (1− β)y + β

Ãr
x

c2 − sL2
− x

!
.

(28)

Solving (23) for β and substituting (26) yield the partition curve

β =
2(c2 − sL2 )(2c1 − c2 + sL2 )

c21
(29)

which divides the (sL2 ,β)-space into two parts: stable region in the right to the
curve and unstable region left.
It can be shown that dynamics generated by (19), respectively (22), are es-

sentially the same as dynamics generated by (25), respectively (28). Introducing
the new variables C = c1 and S = c1−c2+sL2 reduces (25) and (28) to (19) and
(22), respectively. One system can be transformed to the other through vari-
able changes. Thus both systems are topologically conjugate to each other and
generate qualitatively the same dynamics. In particular, the instability value
and the nonnegativity value of (25) can be obtained from those values of (19)
with C and S.

S = −21
29
C =⇒ sL2 = c2 −

50

29
c1

and

S = −
√
2

2
C =⇒ sL2 = c2 −

1

2−
√
2
c1.

Furthermore the partition line, (24) with C and S, can be transformed to (29).

β =
2(C − S)(C + S)

C2
=⇒ β =

2(c2 − sL2 )(2c1 − c2 + sL2 )
c21

.

The equivalence of the dynamic systems implies that (25) generates the same
dynamics as illustrated in Figure 6 with replacing the interval (21) with (27).
Similarly, the output dynamics by (28) is the same as illustrated in Figure 7 with
replacing the partition curve (24) with (29). We can summarize these results as
follows:
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Lemma 3. If the firms are asymmetric, then the naively adjusted dynamic
system (25) starts the period-doubling bifurcation leading to chaos if sL2
decreases from the instability value of the interval (27) to the nonnega-
tive value whereas the adaptively adjusted dynamic system (28) generates
complex dynamics involving chaos for (sL2 ,β) such as

β >
2(c2 − sL2 )(2c1 − c2 + sL2 )

c21
.

Lemmas 1 and 2 are concerned with the output dynamics of the symmetric
firms while Lemma 3 is concerned with the output dynamics of the asymmetric
firms. Notice that the results are essentially the same, hence, the production
cost differences do not affect the asymptotic behavior of the unstable output
dynamics if the trade policy is adaptively adjusted. These results can be sum-
marized as follows:

Theorem 7 If the optimal trade policy is asymptotically stable, then the output
dynamic system generates the same dynamics regardless of the symmetry or
asymmetry of the firms.

The output dynamic system with adaptive expectation might lead to nega-
tive quantities in numerical simulations. To avoid such economically unfavor-
able phenomena, we repeated the simulations with the modified output dynamic
equations ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0 = (1− β)x+ βMax

∙
0,

µr
y

c1 + se2
− y

¶¸
,

y0 = (1− β)y + βMax

∙
0,

µr
x

c2 − se2
− x

¶¸
.

(30)

The results are shown in Figure 7. This is not the only way to prevent negative
quantities. Following Yousefi (2002), we can also use the alternative formulation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x
0
=Max

∙
0, (1− β)x+ β

µr
y

c1 + se2
− y

¶¸
,

y
0
=Max

∙
0, (1− β)y + β

µr
x

c2 − se2
− x

¶¸
.

(31)

It is clear that the asymptotic behavior of (30) is different from the asymp-
totic behavior of (31). Figure 8 shows the two-parameter bifurcation diagram
generated by (31). Apparently there are many differences between the bifurca-
tion diagrams of Figures 7 and 8. However, our main finding that the adaptive
systems can generate rich dynamics still can hold in the bifurcation diagram
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shown in Figure 8.

Figure 8. The two-parameter bifurcation diagram generated by (??)

5 Conclusion
In this paper, we construct a three-country model with two governments and
two firms and consider the dynamic behavior of the sequential subsidy game in
which the governments determine their optimal trade policies and then the firms
determine their optimal outputs. We first deal with the governments’ decision
process from static and dynamic points of view. We find that the cost difference
and the expectation formation of the governments are crucial in characterizing
the optimal trade policy. In short, if the firms are symmetric, then there are
infinitely many optimal policies (Theorem 1). A symmetric period-2 cycle of
the trade policy emerges if naive adjustment process is adopted (Theorem 2)
and a trajectory converges to one of the optimal policies if adaptive adjustment
process is used (Theorem 3). If the firms are asymmetric, then a unique optimal
policy exits and is asymptotically stable regardless of the expectation formations
(Theorem 4). We then deal with the output dynamics and demonstrate that
the expectation formation of the government matters but the cost difference
does not matter. If the trade policy is adaptively adjusted, then an output
trajectory exhibits periodic cycle which is synchronized with the period-2 cycle
of the optimal trade policy even if the Cournot output equilibrium is locally
stable (Theorems 5 and 6). If the trade policy is adaptively adjusted, then
complex output dynamics involving chaos emerges regardless of the expectation
formation (Theorem 7). Finally it is worth mentioning that complex dynamics
can be born under a small or even zero difference of the production costs in our
model while much larger difference is required to generate chaotic dynamics in
nonlinear duopoly models with isoelastic price function.
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