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Abstract

This paper investigates the e¤ect caused by an increase in ambient
charges on �rm-speci�c and total pollutions in a Cournot oligopoly mar-
ket. Formalizing pro�t-maximizing behavior in the n-�rm framework with
product di¤erentiation, we show the static result that ambient change can
reduce industrial pollution. We then demonstrate three dynamic results:
the �rst that Cournot equilibrium can lose stability in the discrete time
framework if the number of the �rms is greater than four, the second that
it is always stable in the continuous time framework and the third that
stability can be switched to instability if a delay in production becomes
large enough.
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1 Introduction

This paper investigates the e¤ects caused by ambient charges on the pollutions
arose in an n-�rm Cournot market. Its attention is put on nonpoint source
(NPS) pollution such as water and air pollution from di¤use sources. Although
any pollutant originates from a single point source, the long-range transport
ability and multiple sources of the pollutant make it a nonpoint source of pol-
lution. For the government that would like to control pollutions, it might be
impossible to measure �rm-speci�c emissions whereas possible to measure the
total level of pollution. As suggested by Segerson (1988), the government adopts
an environmental policy to establish a cut-o¤ level of the whole pollution and to
make the following rule: regardless of �rm speci�c emission level, if the actual
level of the total pollutions exceeds the cut-o¤ level, then all �rms levy the same
penalty while if the actual level falls short of the cut-o¤ level, then all �rms are
awarded the same subsidy. Ganguli and Raju (2012) show a "perverse" ambient
charge e¤ect on total pollution, an increase in the ambient charge could lead
to greater pollution, in the Bertrand duopoly. On the other hand, Raju and
Ganguli (2013) examine the same subject in a Cournot duopoly framework and
attain the e¤ective result such that an increase in the ambient charges reduce
pollutant emissions. This study steps forward and demonstrate the e¤ective
environmental policy in an n-�rm Cournot market.
This paper is organized as follows. Section 2 presents the basic mathematical

model. Section 3 considers the e¤ect of increasing ambient charges on individual
as well as total pollutions. Section 4 examine the stability of Cournot equilib-
rium in the discrete and continuous time scales. Finally, Section 5 concludes
the paper.

2 Cournot Model

There are n �rms in the oligopoly market, producing a di¤erentiated product.
The production quantity and price of �rm k are represented by qk and pk. It is
assumed that the linear price function of good k is

pk = �� qk � 
nX
i 6=k

qi for k = 1; 2; :::; n (1)

where n � 2 and 0 <  < 1, implying that the goods are substitutes.1 It is also
assumed that all the �rms have the same marginal production cost, c. Firm k
emits pollutants ekqk in connection with its production with positive emission
coe¢ cient ek > 0. The government can measure the total emission quantity and
has an exogenously determined environmental standard �E: According to m > 0
times the di¤erence between the total emission,

Pn
k=1 ekqk and the standard,

it will levy the penalty if the di¤erence is positive and award the subsidy if

1The goods are complements if �1 <  < 0.
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negative. In consequence, the pro�t of �rm k is expressed as

�k = (pk � c)qk �m
�

nP
i=1

eiqi � �E

�
: (2)

Under Cournot competition, �rm k determines its output to maximize its pro�t
subject to its price demand function, taking the other �rms�quantities given.
Assuming interior maximum and solving its �rst-order condition yield the best
response of �rm k,

qk =
�� ck
2

� 
2

nX
i 6=k

qi for k = 1; 2; :::; n: (3)

with the marginal cost of �rm k is ck = c + mek. To avoid negative optimal
production, we assume a large enough value of � so that �� ck > 0 holds for all
k: It can be easily checked that the second-order condition is certainly satis�ed.
The Cournot equilibrium output for �rm k is obtained by solving the following
simultaneous equations:

qk +


2

nX
i 6=k

qi =
�� ck
2

for k = 1; 2; :::; n (4)

or in vector form
Bq = A

where for i; j = 1; 2; :::; n;

q = (qi)(n;1) ; A =

�
�� ci
2

�
(n;1)

, B = (Bij)(n;n) with Bii = 1 and Bij =


2
for i 6= j:

Since B is invertible, the Cournot output vector is given by

q = B�1A

where the diagonal and o¤-diagonal elements of B�1 are, respectively,

2(2 + (n� 2))
(2� )(2 + (n� 1)) and �

2

(2� )(2 + (n� 1)) :

Hence the Cournot equilibrium output of �rm k is

qCk =
(�� ck)(2 + (n� 1))� 

Pn
i=1(�� ci)

(2� )(2 + (n� 1)) for k = 1; 2; :::; n: (5)

We check the non-negativity condition for the Cournot output. Equation
(5) can be written as

qCk =
(�� ck)

(2� )(2 + (n� 1)) f(2� ) + n(1� �k)g (6)
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where �k is de�ned as

�k =
1
n

Pn
i=1(�� ci)
�� ck

:

Substituting ck = c+mek changes �k to

�k =
�� c�m�e
�� c�mek

with �e =
1

n

nX
i=1

ei:

�e is the average value of the emission coe¢ cients. It can be shown that

�k R 1() ek R �e:

When �k < 1; �k = 1 and �k > 1; �rm k is called lower-polluter, average-
polluter and higher-polluter as its emission level is lower than, equal to and
larger than the average level. Equation (6) implies qCk > 0 if �k � 1: In a case
of �k > 1, a di¤erent form of equation (6) is

qCk =
(�� ck)(�k � 1)
(2� )(2 + (n� 1))

�
2� 

(�k � 1)
� n

�
(7)

which leads to qCk > 0 if �k > 1 and

n <
2� 

(�k � 1)

which can be called the non-negativity condition for a higher-polluter �rm. We
then summarize these results,

Theorem 1 Cournot output of �rm k is positive if �rm k is either lower-
polluter or average-polluter or if it is higher-polluter and satis�es the non-
negativity condition,

n <
2� 

(�k � 1)
:

3 Ambient Charge

In this section we examine the e¤ect of a change in the ambient charge on �rm-
speci�c production and then total pollution. Substituting ck = c + mek into
equation (5) and arranging the terms present

qCk =
(�� c)(2� ) +m [

Pn
i=1 ei � (2 + (n� 1))ek]

(2� )(2 + (n� 1)) : (8)

Di¤erentiating (8) with respect to m yields

@qCk
@m

=

Pn

i=1 ei � (2 + (n� 1))ek
(2� )(2 + (n� 1)) : (9)
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where the numerator can be written as

n (�e� ek) + ( � 2)ek:

The second term is negative and thus the numerator is also negative if �e � ek;
that is, �rm k is higher- or average-polluter. The sign seems to be ambiguous if
�e > ek: However, since the numerator is di¤erently expressed as

n (�e� ~ek) with ~ek =
n + (2� )

n
ek > ek;

changing m has a negative e¤ect if �e < ~ek and a positive e¤ect if �e > ~ek. That is,
the perverse e¤ect on �rm-speci�c production could be possible for the lower-
polluter �rms. Hence summarizing the results on �rm-speci�c production levels
gives the following.

Theorem 2 An increase in the ambient charge decreases production of higher-
or average-polluter �rm whereas it decreases, increases or does not change pro-
duction of lower-polluter �rm k according to whether �e < ~ek, �e > ~ek or �e = ~ek:

Concerning the total quantity of emission at the Cournot equilibrium,

EC =
nX
k=1

ekq
C
k ;

we have the following result:

Theorem 3 Given positive ek > 0 for all k; then increasing the policy parame-
ter m decreases the total emission.

Proof. Di¤erentiating EC with respect to m and then substituting equation
(9) give

@EC

@m
=
Pn

k=1 ek
@qCk
@m

=
 (
Pn

k=1 ek)
2 � (2 + (n� 1))

Pn
k=1 e

2
k

(2� )(2 + (n� 1))
The denominator is de�nitely positive. Let us denote the numerator by S();

S() = 

 
nX
k=1

ek

!2
� (2 + (n� 1))

nX
k=1

e2k:

We then obtain the trivial result

S(0) = �2
nX
k=1

e2k < 0

5



and

S(1) =

 
nX
k=1

ek

!2
� (1 + n)

nX
k=1

e2k < 0

where the direction of the inequality is shown as follows. The Cauchy inequality
implies  

nX
k=1

ek � 1
!2

�
nX
k=1

e2k �
nX
k=1

12;

so  
nX
k=1

ek

!2
� n

nX
k=1

e2k:

Using the last inequality above we can arrive at S(1) < 0 because

S(1) =

 
nX
k=1

ek

!2
� (1 + n)

nX
k=1

e2k <

 
nX
k=1

ek

!2
� n

nX
k=1

e2k � 0:

Since S() is linear in  and both S(0) and S(1) are negative, the value of S()
is also negative for any  2 (0; 1): Therefore we have the negative derivative,

@EC

@m
< 0:

4 Stability

The e¤ective ambient charge summarized in Theorem 3 is a comparative static
result and thus is economically meaningful only in the stable economy in which
any disturbances of the equilibrium caused by changes in exogenous factors
sooner or later can be eliminated. Dividing this section into three subsections,
we draw attention to stability of the n-�rm Cournot equilibrium from various
view points. First, dynamics with discrete-time scales is considered and then
dynamics with continuous-time scales is examined. In the third subsection delay
dynamics is investigated that is thought to be a hybrid of the two previous cases.

4.1 Discrete-time Dynamics

Assuming naive expectation, the simplest form of expectation, in which each
�rm believes that the other �rms remain unchanged with their outputs from
the previous period. With discrete time scales, the best response (3) gives rise
to the linear dynamic system,

qk(t+ 1) =
�� ck
2

� 
2

nX
i 6=k

qi(t) for k = 1; 2; :::; n: (10)
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The coe¢ cient matrix of system (10) is

JD =

0BB@
0 �

2 � � � �
2

�
2 0 � � � �

2
� � � � � �
�
2 �

2 � � � 0

1CCA
and the corresponding characteristic equation reads

jJD � �Ij = (�1)n
�
�� 

2

�n�1�
�+

(n� 1)
2

�
= 0

where I is the identity matrix. Accordingly there are n�1 identical eigenvalues
and one di¤erent eigenvalue. Without loss of generality, the �rst n � 1 are
assumed to be identical,

�D1 = �
D
2 = ::: = �

D
n�1 =



2
and �Dn = �

(n� 1)
2

:

Since 0 <  < 1, the �rst n� 1 eigenvalues are positive and less than unity. It
hence depends on the value of �Dn whether the Cournot output is stable or not.

It is clear that
����Dn ��� < 1 for n = 2 and 3; implying that the Cournot equilibrium

is de�nitely asymptotically stable in the duopoly and triopoly markets. Solving
�Dn > �1 for n > 3 presents the stability condition,

n <
2 + 



where 1 + 2= > 3 for 0 <  < 1. Notice the following,

2 + 


� 2� 
(�k � 1)

if 1 < �k �
4

2 + 
:

Hence there are n � 2 and �k > 1 for which Cournot output for each �rm is
positive and stable. To simplify the analysis, we assume that the non-negativity
condition does not violate the stability condition even for �k > 1: We now
summarize the stability results as follows.

Theorem 4 The Cournot output with discrete time scales is stable if the num-
ber of �rms does not exceed three, otherwise it is stable, marginally stable or
unstable according to the number of the �rms is less than, equal to or greater
than (2 + )=:

This result reminds us the Theocharis theorem concerning the homogeneous
product in which the stability of the Cournot equilibrium depends only on the
number of the �rms involved in the economy. It is stable for n = 2; marginally
stable for n = 3 and unstable for n � 4. Comparing Theocharis theorem with
Theorem 4 reveals that substitutability (i.e., production di¤erentiation) works
to partially stabilize the n � 4 economy.
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4.2 Continuous-time Dynamics

If continuous time scales are assumed and qk(t + 1) � qk(t) in equation (10) is
replaced with _qk(t) = dqk(t)=dt; then the dynamic system (10) turns to be

_qk(t) =
�� ck
2

� qk(t)�


2

nX
i 6=k

qi(t) for k = 1; 2; :::; n: (11)

Notice that the steady state of system (11) is the same as the one of system
(10). A Jacobi matrix is

JC =

0BB@
�1 �

2 � � � �
2

�
2 �1 � � � �

2
� � � � � �
�
2 �

2 � � � �1

1CCA = JD�I

Since I is the identity matrix, �Ci = �
D
i � 1 for i = 1; 2; :::; n; that is,

�C1 = �
C
2 = ::: = �

C
n�1 = �1 +



2
< 0 and �Cn = �1�

(n� 1)
2

< 0

which are summarized as follows:

Theorem 5 The Cournot output with continuous time scales is always asymp-
totically stable regardless of the number of the �rms and the degree of substi-
tutability.

It has been known that the n-�rm Cournot equilibrium with the homogenous
product is stable in the continuous-time framework. Theorem 5 implies that
production di¤erentiation can not be a destabilizing factor. Theorems 4 and
5 show sharply di¤erent dynamic results that is sensitive to selection of time
scales. A natural question to arise concerns stability in a delay system that is a
hybrid of these two systems.

4.3 Delay Dynamics

In this section we introduce delay into the continuous-time system (11) and
examine how the delays a¤ect dynamics.2

4.3.1 O¤-Diagonal Delays

We �rst consider the case in which the �rms have delays for obtaining informa-
tion about the competitor�s decisions that we will call information delays. The
dynamic system (11) is modi�ed as follows:

_qk(t) =
�� ck
2

� qk(t)�


2

nX
i 6=k

qi(t� �) for k = 1; 2; :::; n (12)

2This section depends on Matsumoto and Szidarovszky (2015).
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where � > 0 is the length of the information delay and is assumed to be identical
for all �rms for the sake of analytical simplicity. Linearizing equation (12) at
the equilibrium point and assuming exponential solutions, qk(t) = e�tuk for
i = 1; 2; :::; n and substituting these into it, we then obtain the following from
of the coe¢ cient matrix,

J1 =

0BB@
�1� � �

2 e
��� � � � �

2 e
���

�
2 e
��� �1� � � � � �

2 e
���

� � � � � �
�
2 e
��� �

2 e
��� � � � �1� �

1CCA : (13)

Equation det(J1) = 0 has the form�
�+ 1� 1

2
e���

�n�1�
�+ 1 +

n� 1
2

e���
�
= 0

that generates two independent equations, the �rst n � 1 solutions satisfy the
�rst equation

�+ 1� 1
2
e��� = 0 (14)

and the last nth solution solves the second equation

�+ 1 +
n� 1
2

e��� = 0: (15)

We investigate the possibility of stability switch leading to stability loss (i.e.,
stability switches to instability) or stability regain (i.e., instability switches to
stability). It could occur when the real parts of the eigenvalue are zero. Since
it is apparent that � = 0 is not a solution of either (14) or (15), we suppose
that � = i! with ! > 0 could be a solution.3 We start with equation (14) and
then substitute this purely imaginary solution into it to investigate whether an
appropriate ! can be obtained,

i! + 1� 
2
e�i!� = 0

that is divided into the real and imaginary parts,

1� 
2
cos!� = 0;

and
! +



2
sin!� = 0:

Moving the constant terms to the right hand side and adding the squares of
these equations yield

!2 =
�
2

�2
� 1 < 0

3We obtain the same result to be obtain if ! < 0 is assumed as complex roots are conjugate.
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where the inequality is due to the assumption of substitutability 0 <  < 1 and
thus leads to the result that there is no ! > 0. This implies no occurrence of
stability switch.
We now turn attention to the solution of equation (15) and repeat the same

procedure: substituting the purely imaginary solution � = i! with ! > 0 into
equation (15) and then separating the real part from the imaginary parts give

1 +
n� 1
2

 cos!� = 0 (16)

and
! � n� 1

2
 sin!� = 0: (17)

Again, moving the constant terms to the right hand sides and then adding the
squares of these expressions present

!2 =
[(n� 1) � 2] [(n� 1) + 2]

4

from which we can derive two results,

(1) if n � 2 + 


; then there is no ! > 0, implying no stability switch.

(2) if n >
2 + 


; then there is the positive solution

!� =

p
[(n� 1) � 2] [(n� 1) + 2]

2
:

Notice that
2

n� 1 � 1 >  for n = 2 and n = 3: Therefore the Cournot

equilibrium is stable in the duopoly and triopoly markets. Substituting !� into
equation (16) and solving it for � determine the threshold value of � for which
some of the characteristic roots are purely imaginary4 ,

��m =
1

!�

�
cos�1

�
� 2

(n� 1) 

�
+ 2m�

�
for m = 0; 1; 2; :::

Since it is already shown that the system is asymptotically stable for � = 0;
stability is switched to instability when increasing the value of � form zero
arrives at the smallest threshold value,

��0 =

2 cos�1
�
� 2

(n� 1) 

�
p
[(n� 1) � 2] [(n� 1) + 2]

:

Given the number of n; the critical threshold value ��0 decreases as a value of 
increases, implying a destabilizing e¤ect in the sense that the stability region in
the (; �) region shrinks.

4Substituting !� into equation (17) and then solving it for � give the same value in a
di¤erent form.
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Theorem 6 If there are information delays in the competitors�production, then

the Cournot production is stable for any � � 0 if n � 2 + 


whereas it is stable

for � < ��0 and unstable for � > �
�
0 if n >

2 + 


:

4.3.2 Diagonal Delays

We now examine the case in which the �rms have delays in their own production
level, delays of which are called implementation delays. The dynamic equation
(11) is modi�ed as follows:

_qk(t) =
�� ck
2

� qk(t� �)�


2

nX
i 6=k

qi(t) for k = 1; 2; :::; n (18)

where � > 0 now denotes the length of the implementation delay and is assumed
to be identical for all �rms for the sake of analytical simplicity. As usual, given
an exponential solution, qk(t) = e��tuk, the coe¢ cient matrix becomes

J2 =

0BB@
�e��� � � �

2 � � � �
2

�
2 �e��� � � � � � �

2
� � � � � �
�
2 �

2 � � � �e��� � �

1CCA : (19)

and the corresponding equation det(J2) = 0 has the form�
�+ e��� � 

2

�n�1�
�+ e��� +

n� 1
2



�
= 0

that is divided into the two independent equations,

�+ e��� � 
2
= 0 (20)

and
�+ e��� +

n� 1
2

 = 0: (21)

As in the same way as in the previous case, we suppose that there is a purely
imaginary solution � = i!; ! > 0 and substitute it into equation (20) to obtain
the real and imaginary parts,

cos �! =


2

and
sin �! = !:

Adding the squares of these equations and then solving it for ! present

!�a =

p
(2� )(2 + )

2
> 0

11



and solving the real part for � yields

��a;m =
1

!�a

h
cos�1

�
2

�
+ 2m�

i
for m = 0; 1; 2; :::

The threshold value at which the stability switch takes place is

��a;0 =
2 cos�1

�
2

�
p
(2� )(2 + )

: (22)

Notice that this value is independent from the number of the �rms.
We now turn attention to equation (21). Solving it with � = i! and ! > 0

presents

!2 =
[2� (n� 1)] [2 + (n� 1)]

4

from which we have two results:

(1) if n � 2 + 


; then there is no ! > 0, implying no stability switch.

(2) if n <
2 + 


; then there is the positive solution,

!�b =

p
[2� (n� 1)] [2 + (n� 1)]

2
> 0:

and

��b;m =
1

!�b

�
cos�1

�
� (n� 1) 

2

�
+ 2m�

�
for m = 0; 1; 2; :::

The smallest threshold value is

��b;0 =

2 cos�1
�
� (n� 1) 

2

�
p
[2� (n� 1)] [2 + (n� 1)]

: (23)

Since we have two stability switching curves (22) and (23), we determine
which is e¤ective in particular. For n = 2;

��b;0 � ��a;0 =
2p

(2� )(2 + )

h
cos�1

�
�
2

�
� cos�1

�
2

�i
> 0 for  > 0

implying that ��b;0 should be located above �
�
a;0 for  > 0 and n = 2 where

��a;0 = �
�
b;0 =

�

2
for  = 0 regardless of the number of n:

The numerator of (23) increases in n, and the denominator decreases in n, so
��b;0 increases as n becomes larger. Therefore

��b;0 > �
�
a;0 for any 0 <  < 1 and n � 2:

12



This result is partially visualized in Figure 1 where the blue curves describe ��b;0
with n = 3; 4; 5 and the red curve does ��a;0.

Figure 1. The ��a;0 red curve and the �
�
b;0 blue

curves with n = 3; 4; 5

Conditions given in (23) imply the following

Theorem 7 If there are implementation delays in the �rms�own productions,
then the Cournot production is stable for � < ��a;0 and is unstable at � � ��a;0:

4.3.3 Diagonal and O¤-Diagonal Delays

Next we deal with the case in which both the implementation and information
delays coexist. However, for the sake of analytical simplicity, both delays are
assumed to be identical. So the both-delay system is

_qk(t) =
�� ck
2

� qk(t� �)�


2

nX
i 6=k

qi(t� �) for k = 1; 2; :::; n (24)

where � > 0 denotes the common length of the both delays. The determinant
equation of (24) is obtained by combining J1 and J2;

J3 =

0BB@
�e��� � � �

2 e
��� � � � �

2 e
���

�
2 e
��� �e��� � � � � � �

2 e
���

� � � � � �
�
2 e
��� �

2 e
��� � � � �e��� � �

1CCA : (25)
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and the corresponding equation det(J3) = 0 has the form�
�+ e��� � 

2
e���

�n�1�
�+ e��� +

(n� 1)
2

e���
�
= 0

that generates two independent equations

�+ e��� � 
2
e��� = 0 (26)

and

�+ e��� +
(n� 1)

2
e��� = 0: (27)

In the same way as before, we suppose that � = i! with ! > 0 and then
substituting it into equation (26) to obtain

!�A =
2� 
2

> 0

and
��A;m =

1

!�A

��
2
+ 2m�

�
for m = 0; 1; 2; :::

with
��A;0 =

�

2�  : (28)

Similarly substituting � = i! with ! > 0 into equation (27), we can derive

!�B =
2 + (n� 1)

2

and
��B;m =

1

!�B

��
2
+ 2m�

�
for m = 0; 1; 2; :::

with
��B;0 =

�

2 + (n� 1) < �
�
A;0: (29)

Relation (29) implies the following:

Theorem 8 If the information and implementation delays coexist, then both-
delay system (24) is stable for � < �B;0 and loses stability for � � �B;0:

Figure 2 illustrates three stability switch curves with n = 9, the ��0 curve that
is asymptotic to the vertical dotted line at 0 = 0:25, the �

�
a;0 black curve and

the ��B;0 blue curve, the last two curves of which intersect at 1 ' 0:412: For
 < 0; the o¤-diagonal delay model is always stable for any � � 0 whereas
increasing the value of � �rst destabilizes the both-delay model and then the
diagonal delay model. For 0 <  � 1; the o¤-diagonal model loses stability
last. Finally for 1 <  < 1; stability is lost in order of the both-delay model,
the o¤-diagonal model and the diagonal model when � increases from zero.
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Figure 2. the stability switching curves of ��0 (red); �
�
a;0

(black) and ��B;0 (blue), given n = 9:

5 Concluding Remarks

The e¤ect of the ambient charges on total pollution in a Cournot oligopoly was
examined. First the Cournot equilibrium was determined and condition was
given to the positivity of the individual output levels of the �rms. An increase
of the ambient charge can have a diverse e¤ect on the production levels: if a
�rm is higher- or average-polluter, then its output decreases, otherwise it can
increase, decrease or remain the same depending on a simple condition derived
in the paper. It is also proved that the total emission decreases by increasing
the policy parameter.
Dynamic models were then constructed in both discrete and continuous time

scales based on naive expectations of the �rms. In the case of discrete time
scales, stability depends on the number of the �rms, which result reduces to
the classical theorem of Theocharis in the case of  = 1. The dynamics with
continuous time scales always generates the stability of the equilibrium. As a
hybrid of these two dynamic models, we constructed a production-delay dynamic
model in which the stability can be lost if the length of the delay becomes large
enough.
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