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1 Introduction

It is a well-known that in examining dynamic economic systems that continu-
ous models are more stable than discrete systems. This is demostrated in many
works including Bischi et al. (2010), where the discrete and continuous ver-
sions of the di¤erent extensions of the Cournot oligopoly model are examined.
In this note we give general mathematical reasons for this fact by comparing
the eigenvalues of the Jacobians as well as comparing the condtitions on the
characteristic polynomial coe¢ cients in the two-dimensional case.

2 Stability Conditions

2.1 n dimensional system

Considere an n-dimensional continuous system

_xi(t) = fi (x1(t); x2(t); :::; xn(t)) (i = 1; 2; :::; n) (1)

where funcions fi are continuously di¤erentiable in the neighborhood of a steady
state �x = (�x1; �x2; :::�xn): The linearized system around this steady state has the
form

_xi�(t) =

nX
j=1

@fi(�x)

@xj
xj�(t) (2)

where xi�(t) = xi(t) � �xi for all i: This is a linear system and it is well-known
(see for example, Szidarovszky and Bahill, 1998) that the steady state �x is
asymptotically stable if and only if all eigenvalues of the coe¢ cient matrix have
negative real parts. Notice that the coe¢ cient matrix is the Jacobian of system
(1) at the steady state are given by

JC =

0BBBBB@
@f1(�x)
@x1

� � � @f1(�x)
@xn

�
�
�

�
�
�

@fn(�x)
@x1

� � � @fn(�x)
@xn

1CCCCCA : (3)

where the subscritp "C" stands for continuous.
The corresponding discrete system is obtained by replacing the derivatives

_xi(t) by the increments xi(t+ 1)� xi(t) which results in the discrete system,

xi(t+ 1) = xi(t) + fi (x1(t); x2(t); :::; xn(t)) (i = 1; 2; :::; n): (4)

The linearized version of this equation is clearly

xi�(t+ 1) = xi�(t) +
nX
j=1

@fi(�x)

@xj
xj�(t) (5)
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where we use the simple fact that systems (1) and (4) have the same steady
state. It is also well-known that �x is asymptotically stable if and only if all
eigenvalues of the coe¢ cient matrix of system (5) are inside the unit circle. The
coe¢ cient matrix of this system is

JD =

0BBBBB@
1 + @f1(�x)

@x1
� � � @f1(�x)

@xn
�
�
�

�
�
�

@fn(�x)
@x1

� � � 1 + @fn(�x)
@xn

1CCCCCA (6)

where the subscrit "D" stands for discrete. The coe¢ cient matrices in (3) and
(6) apparently satisfy the relation,

JD = I + JC (7)

where I is the n � n identity matrix. Therefore �D is an eigenvalue of JD if
and only if �D = 1 + �C with some eigenvalue �C of JC : Concerning stability
of these two dynamic systems, we have the following two results:

(I) If
����D��� < 1; then Re(�C) < 0:

(II) Re(�C) < 0 does not necessarily implies
����D��� < 1:

We �rst prove result (I) by assuming that the discrete system is asymptot-

ically stable. Inequality
����D��� < 1 means that �D is inside the unity circle. In

Figure 1, the stable region of the discrete system is the union of the red region
and the part of the yellow region surrounded by the dotted and real curves. So
1 + �C is in the unit circle that is the dotted circle shifted to left by a unity,
therefore �C is inside the circle with unit radius and center �1 as shown as the
yellow region in Figure 1(A).1 It is clear that the real parts of all points of this
circle are negative, implying that the stability of the discrete system implies the
stability of the continuous system. This proves the statement (I).
We proceed to prove result (II). Assume that the continuous system is stable.

Then Re(�C) < 0, so 1 + �C belongs to the region located to the left of the
vertical line Re(�) = +1 as shown in Figure 1(B), where we also indicate the
dotted unit cycle in which the discrete system is stable. It is clear that the unit
circle is only a small part of the stability region of the continous system, which
is the union of the yellow and red regions. So stability of the continuous system

1 If 1 + �C = 1 + �+ i�; then
��1 + �C �� < 1 can be rewritten as

(1 + �)2 + �2 < 12;

and it is necssary that j1 + �j < 1 holds, that is, �2 < � < 0:
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does not necessarily imply the same for the corresponding discrete system.

(A). Discret system (B). Continuous system

Figure 1. Stability regions

In the following two subsections, we turn attention to the special cases, that
is, two and three dimensional systems and convert the stability results obtained
just above to the ones in terms of the coe¢ cients of the characteristic equations.

2.2 Two dimensional systems

In the two dimensional case we will show the same conclusions on stability of
the systems based on the coe¢ cients of the characteristic polynomials. Assume
that the coe¢ cient martix of the continuous system is given by

JC =

�
a b
c d

�
(8)

and then the coe¢ cient matix of the discrete system turns to be

JD = I + JC =

�
a+ 1 b
c d+ 1

�
: (9)

The characteristic polynomial of JC can be written as

det (JC � �I) = �2 � (a+ d)�+ (ad� bc): (10)

The roots have negative real parts if and only if

A = a+ d < 0

B = ad� bc > 0
(11)
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as shown in Szidaovszky and Bahill (1998). The characteristic polynomial of
JD has the following form:

det (JD � �I) = �2 � (a+ d+ 2)�+ (ad+ a+ d+ 1� bc)

= �2 � (A+ 2)�+ (A+B + 1):
(12)

The roots are inside the unit circle if and only if

A+B + 1 < 1;

(A+ 2) + (A+B + 1) + 1 > 0;

�(A+ 2) + (A+B + 1) + 1 > 0;

(13)

as shown in Bischi et al. (2010). Relations (11) show that point (A;B) is in the
second quadrant, however (13) can be written as

A+B < 0;

2A+B + 4 > 0;

B > 0:

(14)

In Figure 3 we illustrate the region of the points (A;B) satisfying (11) by the
union of the yellow and red regions and the region of the point satisfying (14)
with the red region. It is clear that the red region is only a small subset of the
union of the yellow and red regions showing that the stability of the discrete
system implies stability for the continuous system but not the other way round.

Figure 2. Comparison of stability regions
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2.3 Three Dimensional Systems

Consider next a three-dimensional discrete system with characteristic polyno-
mial,

'(�) = (�)3 + a1(�)
2 + a2�+ a3: (15)

As shown by Farebrother (1973), the eigenvalues are inside the unit circle if and
only if

1 + a1 + a2 + a3 > 0;

1� a1 + a2 � a3 > 0;

1� a2 + a1a3 � a23 > 0;

3� a2 > 0:

(16)

The eigenvalues of the corresponding continuous system are �C = �D�1 due to
equation (7). So replacing � in the right hand side of equation (15) with �+ 1
yields the characteristic equation of the continuous system,

(�+ 1)3 + a1(�+ 1)
2 + a2(�+ 1) + a3

= �3 + (3 + a1)�
2 + (3 + 2a1 + a2)�+ (1 + a1 + a2 + a3):

So the system is asymptotically stable if and only if

3 + a1 > 0;

3 + 2a1 + a2 > 0;

1 + a1 + a2 + a3 > 0;

(3 + a1)(3 + 2a1 + a2)� (1 + a1 + a2 + a3) > 0:

(17)

as a consequnce of the Routh-Hurwitz criterion. Although the �rst condition
in (16) and the third condition in (17) are identical, it might be challenging
to analytically check the inclusion relation between these two conditions. We
graphically con�rm it in Figure 3 in which the saddle shaped red body is con-
structed by the four inequality conditions in (16) while the three dimensional
space surrounded by yellow-wise surfaces are constructed by the four conditions
in (17). It is clearly seen that the stability region of the discrete system is
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included in the stable region of the continuous system.

Figure 3. Stability regions

To see the same results from a di¤erent view point, we will numerically show
that the conditions in (16) imply the conditions in (17). To this end, taking
a2 = 1:25; a2 = 1; and a2 = 0:5, respectively, we horizontally cut the 3D box
in Figure 3 at each particular value of a2 parallet to the (a1; a2) plane and then
project the cross-section views onto it. The results are shown in Figure 4 in
which, as before, the red region is the stable region of the discrete system and
the yellow region is the stable region of the continuous system. Results (I) and
(II) holds in the three dimensional models.

(A) a2 = 1:25 (B) a2 = 1 (C) a2 = 0:5

Figure 4. Stability regions in the (a1; a3) plane with the �xed value of a2
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3 Examples

In this section, we con�rm the stability conditions obtained above in actual
economic dynamic models.

Example 1: Theocharis Problem

We start with an n dimensional model. Theocharis (1960) shows a provoca-
tive result (often called "Theocharis problem") of the Cournot quantity adjust-
ment procss: in the case of linear single-product oligopolies without product
di¤erentiation, stability of the discrete-time model depends only on the number
of �rms in the market.2 In particular, it is stable if the number is two, marginally
stable if three and unstable if the number is more than three. Rebuilding the
essential part of his discrete model, we convert it into a continuous-time frame-
work to compare the stability regions.
The price function is linear

p = a� bQ

where a > 0; b > 0 and Q denotes the total output in the market. If xj is �rm
j�s output, then Q is de�ned by

Q =

nX
j=1

xj :

Firm j has a linear cost function Cj(xj) = cjxj and its pro�t is

�j = [a� b(xj +Q�j)]xj � cjxj

where Q�j = Q�xj : Solving the �rst-order condition of the pro�t maximization
yields a best reply of �rm j,

Rj(Q�j) = �
1

2
Q�j +

a� cj
2b

: (18)

Summing up equation (18) for all j = 1; 2; :::; n and solving it for Q present the
equilibrium value of the total output

Q� =
na� C
(n+ 1)b

with C =
nX
j=1

cj :

Substituting Q� into the best reply (18) and then solving the resultan equation
for xj give the equilibrium output level of �rm j

x�j =
1 + C � (n+ 1)ci

(n+ 1)b
:

2The Theocharis problem in a di¤erentiated oligopoly is recently reconsidered by Mat-
sumoto and Szidarovszky (2014a).
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Assuming naive expectation, we consider stability of the equilibrium. The
output adjustment is given by a system of di¤erence equations,

xj(t+ 1) = Rj(Q�j(t))

or
xj(t+ 1) = �

1

2

X
i 6=j

xi(t) +
a� cj
2b

for j = 1; 2; :::; n: (19)

The coe¢ cient matrix of the dynamic system is given by

JD =

0BBBB@
0 �1=2 � � � �1=2

�1=2 0 � � � �1=2
�
�

�
�

�
�

�1=2 �1=2 � � � 0

1CCCCA : (20)

Applying Lemma E.1 of Bischi et al. (2010), we can obtain the following char-
acteristic polynmoial,3

det(JD � �I) = (�1)n
�
�� 1

2

�n�1�
�+

n� 1
2

�
where the characteristic roots are

�D1 = ::: = �
D
n�1 =

1

2
and �Dn = �

n� 1
2

:

Stability depends on the value of �Dn that is equal to

�1=2 if n = 2;

�1 if n = 3;

�3=2 if n = 4

and smaller than � 4=3 for n � 5:
3Let A be a matrix having the following form

A =

0BBB@
a1 b1 � � � b1
b2 a2 � � � b2
�
�

�
�

�
�

bn bn � � � an

1CCCA :
Then the characteristic polynomial of matrix A is given by

det(A� �I) =

nY
k=1

(ak � bk � �)
 
1 +

nX
k=1

bk

ak � bk � �

!
. This result is repeatedly used in the later part of this paper.
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Hence the oligopoly model is stable in the duopoly market, marginally stable
(i.e., cyclic �uctuations) in the triopoly market while it is unstable in the quar-
tropoly market and the market with n � 5 is also unstable.
We can construct the corresponding continuous-time Cournot model by re-

placing x(t + 1) � x(t) with _x(t): Let JC be the coe¢ cient matrix of the con-
tinuous time system

JC =

0BBBB@
�1 �1=2 � � � �1=2
�1=2 �1 � � � �1=2
�
�

�
�

�
�

�1=2 �1=2 � � � �1

1CCCCA : (21)

The characteristic equation is

det(JC � �I) = (�1)n
�
�+

1

2

�n�1�
�+

n+ 1

2

�
= 0

and the characteristic roots are

�C1 = ::: = �
C
n�1 = �

1

2
< 0 and �Cn = �

n+ 1

2
< 0:

This result is also obtained via the relation (7) in which JD = I + JC implies
that �C is equal to �D � 1: Hence the continuous system is always stable ir-
respective of the number of n: Thus in the large size market in which many
�rms participate (more precisely, n > 3), two dynamic system show a sharp
di¤erence, the discrete-time model is always unstable and the continuous-time
model is always stable.

Example 2: Adjustment toward best responses

We take up a two dimensional model. Consider a duopoly with linear price
and linear cost function as in Example 1. Equation (18) with n = 2 yields the
best reply of �rm j

Rj(x3�j) =
a� cj
2b

� x3�j
2

for j = 1; 2:

The continuous dynamic system with adjustment toward best responses has the
form4

_xj(t) = kj (Rj(x3�j)� xj) for j = 1; 2 (22)

where kj is a adjustment coe¢ cient. A co¢ cient matrix is

JC =

0B@ �k1 �k1
2

�k2
2

�k2

1CA :
4Notice that the output adjustment in the Theocharis model is given by

_xj(t) = Rj(Q�j(t)) for j = 1; 2; :::; n;

as in the previous example
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The characteristic polynomial is

det (JC � �I) = �2 + (k1 + k2)�+
3k1k2
4

:

So the system is always asymptotically stable since the positive coe¢ cients
satisfy the Routh-Hurwitz stability criterion with n = 2,

k1 + k2 > 0

and
k1k2 > 0:

The discrete counterpart can be obtained when _xk(t) is replaced by xk(t +
1)� xk(t) resulting in the following discrte system:

x1(t+ 1) = (1� k1)x1(t)�
k1
2
x2(t) + k1

a� c1
2b

x2(t+ 1) = (1� k2)x2(t)�
k2
2
x1(t) + k2

a� c2
2b

(23)

with co¢ cient matrix

JD =

0B@ 1� k1 �k1
2

�k2
2

1� k2

1CA :
So we can apply the general argumnts in comparing the stability condition. The
characteristic polynomial has the form

det (JD � �I) = �2 + (�2 + k1 + k2)�+
�
1� k1 � k2 +

3k1k2
4

�
:

The roots are inside the unit circle if and only if

1� k1 � k2 +
3k1k2
4

< 1

1 + (�2 + k1 + k2) +
�
1� k1 � k2 +

3k1k2
4

�
> 0

and

1� (�2 + k1 + k2) +
�
1� k1 � k2 +

3kk2
4

�
> 0

which can be simpli�ed in the following way:

k1 + k2 �
3k1k2
4

> 0 (24)

k1k2 > 0 (25)
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and
3k1k2
4

� 2(k1 + k2) + 4 > 0: (26)

Condition (25) is always satis�ed. Conditions (24) and (25) are visualized in
Figure 6(A). The middle hyperbola is the boundary of the horizontally-striped
region in which condition (24) holds. The lower and higher hyperbolas are
boundaries of the vertically-striped regions in which condition (25) holds. Ap-
parently, the quarterly disk-shaped region in the lower-left corner is horizontally
and vertically-striped and thus two conditions are satis�ed there. It is the sta-
bility region of the discret system (23). The stability regions of the two systems
in the (k1; k2) plane are shown in Figure 6(B). The red region is the stability
region for the discret system while the union of the red and yellow regions is
the stability region of the continuous system. The main result is graphically
con�rmed: if the discrete-time system is locally stable, then the corresponding
continuous-time system is always stable but not vice versa.

(A) Stability conditions (B) Stability regions

Figure 5. Stability conditions and region of th linear duopoly model

Example 3: Puu�s nonlinear duopoly model

We consider a nonlinear two dimensional duopoly model proposed by Puu
(2003). We retain the the linear cost function but replace the linear price func-
tion with an isoelastic price funciton,

p =
1

x1 + x2
:

The pro�t of �rm j is

�j =
xj

xj + x3�j
� cjxj for j = 1; 2:

12



Solving the �rst order condition of the pro�t maximization yields the best reply

Rj(x3�j) =

r
x3�j
cj

� x3�j for j = 1; 2:: (27)

The positive equilibrium output at the Cournot point is

x�j =
c3�j

(c1 + c2)2
for j = 1; 2:

To simplify the dynamic analysis, we adopt a naive expectation formation
of output and construct the discrete-time output adjustment as

xj(t+ 1) =

s
x3�j(t)

cj
� x3�j(t) for j = 1; 2: (28)

The coe¢ cient matrix is

JD =

0B@ 0
c2 � c1
2c1

c1 � c2
2c2

0

1CA
and the corresponding characteristic equation is det(JD � �I) = 0 or

�2 =
(c1 � c2)(c2 � c1)

4c1c2

where the stability conditions are

�1 < (c1 � c2)(c2 � c1)
4c1c2

< 1:

The second inequality is always satis�ed as the middle term is negative and the
�rst inequality condition is rewritten as

c21 � 6c1c2 + c22 < 0

which can be solved for the ratio

3� 2
p
2(' 0:172) < c2

c1
< 3 + 2

p
2(' 5:828): (29)

Therefore the discrete-time dynamic system (28) is locally asymptotically stable
if the ratio of the marginal costs c1 and c2 satis�es the last two inequlities.
Let us convert the discrete-time system to the continuous-time system by

subtracting xj(t) from the both sides of (28) and then replacing xj(t+1)�xj(t)
by _xj(t);

_xj(t) = �xj(t)�

s
x3�j(t)

cj
� x3�j(t) for j = 1; 2: (30)
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The coe¢ cient martix is

JC =

0B@ �1 c2 � c1
2c1

c1 � c2
2c2

�1

1CA :
The characteristic equation is det(JC � �I) = 0 or

�2 + 2�+

�
1� (c1 � c2)(c2 � c1)

4c1c2

�
= 0: (31)

According to the Routh-Hurwitz stability criterion with n = 2; the real parts
of the characteristic roots are negative if the sum and the product of the two
coe¢ cients are positive. Since the third term of equation (31) is positive,

1� (c1 � c2)(c2 � c1)
4c1c2

=
(c1 + c2)

2

4c1c2
> 0;

the continuous time dynamic system (30) is locally asymptotically stable for
any c1 > 0 and c2 > 0. The stability regions of the two systems are illustrated
as in Figure 7 in which the boundaries of the red and yellow regions are given
by

c2 =
�
3 + 2

p
2
�
c1 and c2 =

�
3� 2

p
2
�
c1:

Figure 6. The stability regions in the
nonlinear duopoly model

Example 4: Linear triopoly model

14



We now draw attention to a three dimensional linear model in which the
best response of �rm j is given by (18) with n = 3,

Rj(Q�j) =
a� cj
2b

� 1
2
Q�j

where Q = x1 + x2 + x3 and Q�j = Q � xj : The continuous dynamic system
with adjustment toward best responses has the form

_xj(t) = kj (Rj(Q�j)� xj) for k = 1; 2; 3 (32)

with coe¢ cient martrix

JC =

0BBBB@
�k1 �k1

2
�k1
2

�k2
2

�k2 �k2
2

�k3
2

�k3
2

�k3

1CCCCA :

The corresponding characteristic equation is det(JC � �CI) = 0 or

�3 + a1�
2 + a2�+ a3 = 0

where coe¢ cients are given as

a1 = k1 + k2 + k3 > 0;

a2 =
3

4
(k1k2 + k2k3 + k1k3) > 0

and
a3 =

1

2
k1k2k3 > 0:

Furthermore,

a1a2 � a3 = 3f(k2 + k3)k21 + (k1 + k3)k22 + (k1 + k2)k23g+ 7k1k2k3 > 0:

Hence the Routh-Hurwitz criterion with n = 3 is satis�ed and the continuous
system (32) is always locally asymptotically stable for k1 > 0; k2 > 0 and
k3 > 0.
The characteristic roots of the corresponding discrete-time system is givn by

det(JD � �dI) = 0 where JD = I + JC or �C = �D � 1 so the characteristic
polynomial has the form,

(�� 1)3 + a1(�� 1)2 + a2(�� 1) + a3 = �3 + b1�2 + b2�+ b3

where
b1 = a1 � 3

b2 = 3� 2a1 + a2

15



and
b3 = �(1� a1 + a2 � a3):

The stability conditions are given by

1 + b1 + b2 + b3 > 0

1� b1 + b2 � b3 > 0

1� b2 + b1b3 � b23 > 0

3� b2 > 0:

The forms in terms of kj of the other conditions are complicated and their signs
may not be determined analytically. However it is graphically con�rmed that
the second condition is the stronger. Figure 7 shows the stability region in the
discrte case as the red body.

Figure 7.

Example 5: Nonlinear triopoly model

As is already discussed in Puu (2004), in a triopoly with isoelastic price
function and linear cost functions, the best reply of �rm j is given by

xj =

s
Q�j
cj

�Q�j for j = 1; 2; 3:

16



A discrete-time dynamic system with naive expectation is as follows:

x1(t+ 1) =

r
x2(t) + x3(t)

c1
�x2(t)� x3(t);

x2(t+ 1) =

r
x1(t) + x3(t)

c2
�x1(t)� x3(t);

x3(t+ 1) =

r
x1(t) + x2(t)

c3
�x1(t)� x2(t):

where the stationary point x�j = xj(t) = xj(t+ 1) is

x�1 =
2(c2 + c3 � c1)
(c1 + c2 + c3)2

;

x�2 =
2(c1 + c3 � c2)
(c1 + c2 + c3)2

;

x�3 =
2(c1 + c2 � c3)
(c1 + c2 + c3)2

:

To check the local stability of the nonlinear system, we linearize it around the
stationary point and obtain the following form of the Jacobian matrix

JD =

0BBBB@
0

c2 + c3 � 3c1
4c1

c2 + c3 � 3c1
4c1

c1 + c3 � 3c2
4c2

0
c1 + c3 � 3c2

4c2
c1 + c2 � 3c3

4c3

c1 + c2 � 3c3
4c3

0

1CCCCA :

The characteristic equation is de�ned by det (JD � �I) = 0 or

�3 � a2�� a3 = 0

with

a2 = �
c31 + c

3
2 + c

3
3 � 5

�
c21(c2 + c3) + c

2
2(c1 + c3) + c

2
3(c1 + c2)

�
+ 30c1c2c3

16c1c2c3

and

a3 = �
(c1 + c2 � 3c3)(c2 + c3 � 3c1)(c1 + c3 � 3c2)

32c1c2c3
:

With new notations
� =

c2
c1
and � =

c3
c1
;

the stability conditions can be written as

1 + a2 + a3 =
(1 + �+ �)3

32��
> 0;
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1 + a2 � a3 = f1(�; �) > 0;

1� a2 � a23 = f2(�; �) > 0;

3� a2 = f3(�; �) > 0:

Although the explicit forms of fi(�; �) for i = 1; 2; 3 are long and complicated
and thus not given, it is possible to check the stability conditions graphically.
In Figure 8(A), f1(�; �) � 0 in the blue regions and f3(�; �) � 0 in the green
regions while f2(�; �) > 0 in the red region. So in the white and red regions,
f1(�; �) > 0 and f3(�; �) > 0: Consequently, the stability conditions are satis-
�ed in the red region.
The Jacob matrix of the corresponding continuous system is obtained by

JC = JD � I and then the characteristic equation is

det(JC � �I) = �3 + b1�2 + b2�+ b3 = 0

where
b1 = 3

b2 =
(1 + �+ �)

�
6(�+ � + ��)� (1 + �2 + �2)

�
16��

= g1(�; �)

b3 =
(1 + �+ �)3

32��
:

Since b1 > 0 and b3 > 0; the stability conditions of the continuous system is
given by

g1(�; �) > 0

and
b1b2 � b3 = g2(�; �) > 0:

It is graphically con�rmed that g2(�; �) > 0 implies g1(�; �) > 0 but not vice
versa. So the boundary of the stability region is the locus of g2(�; �) = 0 that
is described by the upward-sloping two black curves and the downward-sloping
black curve depicted in a neighborhood of the origin in Figure 8(B). The stability
region of the discrete system is also illustrated in red and located within the
yellow region. Hence stability of the discrete system always implies the stability
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of the continuous system.

(A) (B)

Figure 8.

4 Delay in Continuous System

Delay has been thought to be one of the main ingredients for cyclic oscillations
and thus delay economic dynamics is a relatively old research area. Haldane
(1933) could be the �rst to examine economic dynamics in a delay di¤erential
equation. Since then, delay has been considered in various areas of economics,
Kalecki (1935) and Goodwin (1950) for macroeconomic �uctuations, Howroyd
and Russel (1984) for oligopoly dynamics, Mackey (1989) for price dynamics.
Only recently Matsumoto and Szidarovszky (2014) formulate a delay monopoly
as a model possesing the properties of the discrete system and the continuous
system. To name a few, however it is true that the growth rate of delay study
has been very slow. In this section we return to an n-dimensional model and
consider how the delays in variables a¤ect dynamics with adjustment toward
best replies. To this end, we extend the duopoly model (22) in Example 2 to
the n-dimensional oligopoly model,

_xj(t) = kj [�xj(t) +Rj(Q�j(t))] for j = 1; 2; :::; n: (33)

To simplify the analysis, we impose the following assumption:

Assumption kj = k for all j = 1; 2; :::; n:

The coe¢ cient matrix is

JC =

0BBBB@
�k �k=2 � � � �k=2
�k=2 �k � � � �k=2
�
�

�
�

�
�

�k=2 �k=2 � � � �k

1CCCCA (34)
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and then the characteristic equation is given by det(JC � �I) = 0 or

(�1)n
�
�+

k

2

�n�1�
�+

n+ 1

2
k

�
= 0:

The characteristic roots are

�C1 = ::: = �
C
n�1 = �

1

2
k < 0 and �Cn = �

n+ 1

2
k < 0

and thus the n-dimensional model (33) is asymptotically stable. On the other
hand, the characteristic roots of the corresponding discrete system are obtained
by �D = 1 + �C ;

�D1 = ::: = �
D
n�1 = 1�

1

2
k < 1 and �Cn = 1�

n+ 1

2
k < 1

which yield the stability conditions, �1 < �Dj�1 for j = 1; 2; :::; n�1 and�1 < �Cn
or simply

k <
4

n+ 1
for n � 2: (35)

Hence the stabilty depends on the value of the adjustment coe¢ cient and the
number of the �rms. Theocharis problem is still alive in the discrete system.
We now introduce delays into the continuous system (33) and see how the delay
a¤ect its dynamics. In the following, we examine the delay e¤ects in three
di¤erent ways: delays only in the comeptitors�variables, delays only in the own
variable and delays in both variables.

4.1 O¤-Diagonal Delays

We �rst consider the case in which the �rms have delays for obtaining infor-
mation about the comptitors�decisions which we call information delays. The
dynamic system (33) with the same adjustment coe¢ cients is modi�ed as fol-
lows:

_xj(t) = kj [Rj(Q�j(t� �))� xj(t)] for j = 1; 2; :::; n (36)

where � > 0 is the length of the information delay and is assumed to be identical
for all �rms for the sake of analytical simplicity. Assuming the exponential
solutions, xj(t) = e�tuj for j = 1; 2; :::; n and substituting these into (36) give
the coe¢ cient matrix

J1 =

0BBBBBBBB@

�k �k
2
e��t � � � �k

2
e��t

�k
2
e��t �k � � � �k

2
e��t

�
�

�
�

�
�

�k
2
e��t �k

2
e��t � � � �k

1CCCCCCCCA
(37)
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and the corresponding characteristic equation is given by det(J1 � �I) = 0 or�
�+ k � k

2
e��t

�n�1�
�+ k +

n� 1
2

ke��t
�
= 0

that generates two independent equations,

�+ k � k
2
e��t = 0 and �+ k +

n� 1
2

ke��t = 0: (38)

Supposing that � = i! with ! > 0 and substituting it into the �rst equation of
(38), we have

i! + k � k
2
(cos �! � i sin �!) = 0

which is divided into the real and imaginary parts,

k � k
2
cos �! = 0;

! � k
2
sin �! = 0:

Moving the constant terms to the right hand sides and adding the squares of
these equations gives

!2 = �3
4
k2 < 0

in which the inequality leads to the result that there is no ! > 0: This implies
that no stability switch occurs. In the same way, supposing that � = i! with
! > 0, substituting it into the second equation of (38) and dividing the resultant
expressions into the real and imaginary parts give

k +
n� 1
2

k cos �! = 0;

! � n� 1
2

k sin �! = 0:

(39)

Again, moving the constant terms to the right hand sides and adding the squares
of these equations gives

!2 =
(n+ 1)(n� 3)

4
k2

from which we derive the following two results,

(i) if n � 3; then there is no ! > 0, implying no stability switch;

(ii) if n � 4; then there is !� =
p
(n+1)(n�3)

2 k > 0; implying stability switch

Substituting !� into the �rst equatio of (39) and solving it for � determine
the threshold values of � for which some of the characteristic roots are purely
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imaginary,5

��m =
1

!�

�
cos�1

�
� 2

n� 1

�
+ 2m�

�
:

Since it is already shown that the system is asymptotically stable for � = 0,
stability is switchd to instability when � �rst arrives at the threshold value ��0,

��0(k; n) =
2 cos�1

�
� 2
n�1

�
p
(n+ 1)(n� 3

1

k
(40)

which is a hyperbola with respect to k. The �rst factor of the right hand side
expression approximately takes

2:06 if n = 4; 1:21 if n = 5 and 0:87 if n = 6:

So the hyperbolic curve shifts downward as the number of the �rms in the
market increases, that is, increasing n has a destabilizing e¤ect in the sense
that the stability region in the (k; �) plane shrinks.

4.2 Diagonal Delays

We now examine the case in which the �rms have delays for making decisins to
change production and/or for putting these descisions into e¤ects which we call
implementation delays. The dynamic system (33) is modi�ed as follows:

_xj(t) = kj [�xj(t� �) +Rj(Q�j(t))] for j = 1; 2; :::; n (41)

where � > 0 now denotes the length of the implementation delay and is assumed
to be identical for all �rms for the sake of analytical simplicity. Given xj =
e��tuj for j = 1; 2; :::; n, the coe¢ cient matrix is

J2 =

0BBBBBBBB@

�ke��t �k
2

� � � �k
2

�k
2

�ke��t � � � �k
2

�
�

�
�

�
�

�k
2

�k
2

� � � �ke��t

1CCCCCCCCA
(42)

and the corresponding characteristic equation is given by det(J2 � �I) = 0 or�
�� k

2
+ ke��t

�n�1�
�+

n� 1
2

k + ke��t
�
= 0

5Substituting !� into the second equation and solving it for � give the di¤erent form for
the same value,

��n =
1

!�

�
� � sin�1

�
2!�

(n� 1)k

�
+ 2n�

�
:
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that generates two independent equations,

�� k
2
+ ke��t = 0 and �+

n� 1
2

k + ke��t = 0: (43)

As in the same way as in the Section 4-1, we suppose that � = i!; ! > 0 and
substitute it into the �rst equation of (43). Following the same procedure yields

!�a =

p
3

2
k > 0

and

��a;m =
1

!�a

�
cos�1

�
1

2

�
+ 2m�

�
:

The threshold value ��a;0 is

��a;0(k) =
2�

3
p
3

1

k
: (44)

Notice that this value is independent from the number of the �rms.
Solving the scond equation of (43) with � = i! presents

!2 =
(n+ 1)(3� n)

4
k2

which can be positive only for n = 2;

!�b =

p
3

2
k > 0

and

��b;m =
1

!�b

�
cos�1

�
�1
2

�
+ 2m�

�
:

The threhold value ��b;0 is

��b;0(k) =
4�

3
p
3

1

k
= 2��a;0: (45)

Equation (45) implies that the delay system (41) is stable for � < ��a;0 and loses
stability for � � ��a;0: Hence equation (44) determines the stability switching
curve even for n = 2.

4.3 Diagonal and O¤-Diagonal Delays

In this subsection we deal with the case in which the implmentation and in-
formation delays coexist. However, for the sake of simpli�ty both delays are
assumed to be idential. So the delay dynamic system is

_xj(t) = kj [�xj(t� �) +Rj(Q�j(t� �))] for j = 1; 2; :::; n (46)
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where � > 0 now denotes the length of the implementation and infomation
delay. The coe¢ cient matrix is

J3 =

0BBBBBBBB@

�ke��t �k
2
e��t � � � �k

2
e��t

�k
2
e��t �ke��t � � � �k

2
e��t

�
�

�
�

�
�

�k
2
e��t �k

2
e��t � � � �ke��t

1CCCCCCCCA
(47)

and the corresponding characteristic equation is given by det(J3 � �I) = 0 or�
�+

k

2
e��t

�n�1�
�+

n+ 1

2
ke��t

�
= 0

that generates two independent equations,

�+
k

2
e��t = 0 and �+

n+ 1

2
ke��t = 0: (48)

As in the same way as in the Section 4-1, we suppose that � = i!; ! > 0 and
substitute it into the �rst equation of (46) to obtain

!�A =
k

2
> 0

and
��A;m =

1

!�A

��
2
+ 2m�

�
with

��A;0(k) =
�

k
:

Solving the scond equation of (43) with � = i! for ! presents

!�B =
n+ 1

2
k > 0

and
��B;m =

1

!�B

��
2
+ 2m�

�
with

��B;0(k; n) =
�

n+ 1

1

k
=

1

n+ 1
��A;0(k): (49)

Equation (49) implies that the delay system (46) is stable for � < ��b;0 and
unstable for � � ��b;0: Hence ��b;0 determines the stability switching curve.
We now examine the locations of the stability switchi curves in three cases,

(40), (44) and (??). First compare the �rst factors that depend only on the value
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of n as depicted in Figure 9(A). The blue, red and green curves are described,
respectively, by

2 cos�1
�
� 2
n�1

�
p
(n+ 1)(n� 3)

;
2�

3
p
3
and

�

n+ 1
:

It is seen that

2 cos�1
�
� 2
n�1

�
p
(n+ 1)(n� 3)

>
�

n+ 1
and

2�

3
p
3
>

�

n+ 1
always for any n > 3 (50)

and
2 cos�1

�
� 2
n�1

�
p
(n+ 1)(n� 3)

R 2�

3
p
3
if n Q 5: (51)

Figure 9(B) illustrates the stability switching curves in the (k; �) regions in
which the real curves have n = 4 and the dotted curves have n = 6. It is seen
�rst that increasing n shi�ts the cuves downward except the � = ��a(k); that
is, it has a destabilizing e¤ect. It is seen second that, as indicated by (51), the
o¤-diagonal delay has stronger destabilizing e¤ect than the diagonal delay if
n < 5 and the relation is reversed if n > 5: It is lastly senn that the two delays
has stronger destabilizing e¤ect than the single delay.

(A) (B)

Figure 9.

We now turn attention to compariosn among the continous, descrete and
delay systems. As before the stability region of the descrete sysems is coloured
in red and the stability region of the continuous system is the uniton of the red
and yellow regions. Notice that the boundary of the red region is described by
the k = 4=(n+ 1) curve. First we take � = 0:7 and illustrate the real curves of
��0(k; n) = � , �

�
a(k) = � and �

�
B(k; n) = � in blue, black and green, respectively.
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It can be seen that all three curves are in the yellow region, implying that the
delay system is more stable than the discrete system. We change the value of
� to 1:5 and illustrate the stability switching curve in the dotted curves in the
same colour. It is seen that the dotted green curve is located in the red region
while the some parts of the black and blue dotted curves are in the red region.
It depends on the number of the �rms involved in the market and the length
of the delay whether the discrete system is more stable than the single delay
system.

Figure 10.

5 Conclusions

In this brief note we presented illustrations an simple mathematical facts why
continous dynamic system are more stable than their discrete counterparts. In
the n-dimensional case the comparirion of the stability regions of the eigenvalues
of the Jacobian showed the reason and in the two dimensional case the stability
region s of the coe¢ cients of the characteristic polynomials were compared to
reach the same conclusion.
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