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Abstract
This paper investigates an economic implication of chaotic fluctuations. To

this end, it constructs a nonlinear, discrete-time Cournot model in which duopoly
firms are heterogeneous and have U-shaped reaction functions with different mi-
croeconomic foundations. Due to the U-shaped reaction functions, output ad-
justment process generates chaotic fluctuations. This paper demonstrates that
duopoly firms can eventually benefit from chaotic output adjustment more than
from all possible equilibria when external effects on production are asymmet-
ric. The result indicates a possibility that chaotic fluctuations are beneficial for
heterogeneous markets.

1 Introduction

Research in the past two decades has demonstrated that a Cournot adjustment process
of output may be chaotic if reaction functions are non-monotonic; see Rand [14], Dana
and Montrucchio [4] and Witteloostuijn and Lier [15] (W-L hereafter), to name a few.
At least two questions arise naturally: (i) Under what economic circumstances do
oligopoly firms react non-monotonically to a change in the rival’s behavior? (ii) Is
chaotic adjustment of output a favorable economic phenomenon?

We have already had two possible answers to the first question. One is given by
Puu [12, 13] who shows that profit maximization with linear production technologies
and a hyperbolic market demand may result in unimodal reaction functions. The other
is by Kopel [8] who confirms that, under a linear demand function and nonlinear cost
functions, profit maximization also generates unimodal reaction functions. The second
question is partly answered for a one-dimensional dynamic process. Huang [7] uses
a cautious cobweb model and gives an affirmative answer that perpetual fluctuations
may be preferable to a competitive equilibrium from the long-run perspective. Kopel
[8], on the other hand, gives a negative answer. He constructs a simple model of evolu-
tionary dynamics to show that various performance measures such as aggregate profits,
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aggregate sales revenues, mean sales and the rate of return indicate the inferiority of
chaotic dynamics to equilibrium on the average. Matsumoto [9] provides an equivocal
result in a simple exchange model with two agents and two goods that the long-run
average performance measure (i.e., utility or profit) taken along a chaotic trajectory
can be greater than the corresponding measure calculated at an equilibrium for one
agent but less for the other.

In this paper, we aim to provide an answer to the second question in a multi-
dimensional dynamic process. In particular, we consider the long-run statistical be-
havior of Cournot duopoly firms. This paper is a continuation of Matsumoto and Non-
aka [10] (M-N hereafter) which also investigates an economic implication of chaotic
adjustment of Cournot duopoly. M-N demonstrate through an example that chaotic
dynamics can be more beneficial than stationary states in terms of the long-run average
profits. They provide a weak result in which chaos is beneficial from the viewpoint of
industry profits. In other words, the sum of the long-run average profits of duopoly
firms taken along chaotic trajectories is larger than the sum of profits obtained at
stationary states. In this paper, however, we will provide the stronger result that for
each of duopoly firm, the long-run average profit is strictly larger than any possible
equilibrium profits if firms are heterogeneous and asymmetric.

The paper is organized as follows. Section 2 constructs a dynamic model of Cournot
duopoly. Section 3 examines existence and stability of equilibria numerically as well
as analytically. Through some numerical experiments, Section 4 investigates the long-
run outcome of the output adjustment of duopoly firms. Section 5 gives concluding
remarks.

2 Model

Consider a market in which two firms, firm 1 and firm 2, compete by producing ho-
mogeneous outputs x and y. Assuming that inverse demand function is linear and
decreasing:

p = a− b(x+ y), a > 0 and b > 0. (1)

Without loss of generality, we normalize the set of outputs of firms to a unit interval
I ≡ [0, 1]. Equation (1) implies that the demand of one firm is externally affected
by the other’s output level and this external effect is always negative. In general,
a downsloping demand curve implies a negative external effect (negative externality
hereafter).

Our primary interest is in the cases where an externality exists not only on de-
mand but also on production. To describe production externality we follow Kopel’s
approximation [8] and make the following assumption.

Assumption 1 Each firm has a marginal cost of production that is constant with
respect to its own output but varies with respect to the rival’s output. Let Ci be the cost
function of firm i. Then

C1(x, y) = c1(y)x and C2(x, y) = c2(x)y (2)
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where ci denotes the marginal cost of firm i.

We specify each ci as follows:

c1(y) = a− by − 2b(αy − α + 1)2

c2(x) = a− bx− 2b(βx− 1)2.
(3)

The last terms in (3) imply that duopoly firms have marginal costs of production
which are unequal nonlinear functions of rival’s output in different manners. Therefore
production externalities are nonlinear for both firms and heterogeneous between the
firms. In particular, if the parameters have relatively high values, both of the marginal
costs are unimodal to the rival’s output. That is, for each firm, the production exter-
nality will change from negative to positive for sufficient increment of the rival’s output.
This negative-positive production externality may come from the hypothesis of labor
hire competition of duopoly firms1. Since it can be positive or negative, production
externality determines the total external effects that result in the reaction patterns of
each firm.

From (1), (2) and (3) The profit functions of the firms become accordingly,

Π1 = px− cx(y)x and Π2 = py − cy(x)y. (4)

Since profit of each firm is a quadratic polynomial of its own output, solving the first-
order condition of the profit maximization problem always gives unique solution for a
given value of the rival’s output. This optimal output is known as the reaction function.
Let ri be the reaction function of firm i, so that

r1(y
e) = arg max

x
Π1(x, y

e) and r2(x
e) = arg max

y
Π1(x

e, y) (5)

where xe and ye are output expectations. Substituting (4) into (5), we have

r1(y) = (αy − α + 1)2, and r2(x) = (βx− 1)2. (6)

If 1 ≤ α, β ≤ 2 both of r1 and r2 map from I to I . We restrict the combinations of the
parameters, α and β , to the following set A:

A ≡ {(α, β)|1 ≤ α, β ≤ 1} (7)

and assume that a ≥ 3b to keep the marginal costs nonnegative for arbitrary x and y
in I . Due to the presence of total external effects, the reaction function can be upward-
or downward-sloping according to whether the external effect is positive or negative.

1Suppose that firms demand labor for output production, and there are many people who want to
work. If firm 2 produces only a small amount of output, it employs only a few people as employment
and output production are positively correlated. Thereby, there are many people left unemployed and
firm 1 can hire at a lower wage rate. While firm 2 expands output, unemployed people can increase
their negotiating power so that firm 1 inevitably offers a higher wage rate to employ more people.
However, if firm 2 employs most of the people, the remaining unemployed people have less negotiating
power than before and thus firm 1 can hire them at a lower wage rate again.
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If α = 1, r1 is monotonically increasing with y. As α becomes larger, the shape of r1
becomes U-shaped. On the contrary, r2 is monotonically decreasing with x with β = 1
and takes U-shaped profile for further increment of β.

About the expectation of each firm toward the rival’s future output, we make a
simple assumption — the so called naive expectation — that is “tomorrow’s expected
output level is today’s observed output level”. Suppose therefore that firms have naive
expectations, xe

t = xt−1 and ye
t = yt−1. The process of output adjustment is

xt+1 = (αyt − α + 1)2,
yt+1 = (βxt − 1)2.

(8)

Intersections of these two reaction functions are the Cournot-Nash equilibria at
which each firm’s expectation toward the other firm’s behavior is confirmed by its
actual behavior. If the expectation is not correct, then firms adjust their outputs.
We assume the Markov-Perfect-Equilibrium (MPE hereafter) process of adjustment,
which implies that firms choose their outputs iteratively as the best response to the
rival’s output in the previous period. Therefore, if the adjustment process of a Cournot
duopoly market follows MPE process, the state of economy (i.e. the output bundle of
duopoly firms) is always defined in the union of the reaction curves2

3 Equilibria

In this section, we investigate the conditions of existence and stability of equilibrium
points of dynamical system (8). Since (8) consists of asymmetric quadratic equations,
we can not easily identify the explicit conditions for equilibrium analytically. Instead,
we approximate the implicit conditions numerically. Section 3.1 considers the existence
of equilibrium points and Section 3.2 examines the stability and bifurcations of these
points.

3.1 Existence of equilibrium points

Since each ri is a quadratic polynomial of the rival’s output, (8) may have four equilibria
S1, S2, S3 and S4. To identify these equilibria, we first combine r1 with r2 to define a
one-dimensional map F :

F (x) ≡ r1 ◦ r2(x) = (1 + αβx(βx − 2))2 (9)

Here F : I → I , since each reaction function ri : I → I . A fixed point of F in I
corresponds to an equilibrium point of (8). Since it is a forth-order polynomial, F
possibly has four fixed points. Denoting a fixed point of F in I by x∗j (j = 1, . . . , 4),
we assume that x∗1 < x∗2 < x∗3 < x∗4 for convenience. Therefore for Sj (j=1, . . . ,4),

Sj = (x∗j , y
∗
j ) such that x∗j = F (x∗j ) and y∗ = r2(x

∗
2) (10)

2Although we assume that firms simultaneously update their outputs, the adjustment process
follows MPE process whenever we restrict the initial condition on the union of the reaction curves.
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To identify the existence of each x∗i , we first examine the fixed points of F from
more general viewpoint through following lemma.

x∗1
x

F

1

1

(a) α = 1.6 and β = 1.7

x∗1 x∗4 = 1
x

F

1

(b) α = 1.6 and β = 2

x∗1 x∗2
x

F

1

1

(c) α � 1.84 and β = 1.33

x∗1 x∗2 x∗3
x

F

1

1

(d) α = 1.75 and β = 1.9

Figure 1: Determinations of fixed points of F .

Lemma 1 F possesses four fixed points. Moreover,

(i) the minimal fixed point of F always exists in the interval (0, 1) for arbitrary
parameter combinations in A and

(ii) the maximal fixed point exists in I and is equal to unity if and only if β = 2.

Proof First we set

F ′(x) ≡ ∂F

∂x
= 4αβ(βx − 1)(αβx2 − 2αβx + 1) (11)
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and

F ′′(x) ≡ ∂2F

∂x2
= 4αβ2(1 + α(3β2x2 − 6βx+ 2). (12)

(i) F (0) = 1 for arbitrary parameter combination in A. In addition, F ′(x) < 0 and
F ′′(x) > 0 for all x in (−∞, 0]. Therefore F has no fixed point in (−∞, 0]. Solving
F (x) = 0, we have x = (α ± √

α(α− 1))/αβ. Let x̂ = (α − √
α(α − 1))/αβ.

Then 0 < x̂ ≤ 1 since 1 ≤ α, β ≤ 2. This immediately leads to the conclusion
that F (x) always cuts once 45-degree line from above in the interval (0, x̂) and
then this intersection is the minimal fixed point of F .

(ii) F (1) = 1 if α = 2/β(2 − β) or β = 2. In the former case, α = 2 with β = 1
and α > 2 with 1 < β ≤ 2. Then assume that α = 2 and β = 1. Here x = 1
is a fixed point of F and F ′(1) = 0 and F ′′(1) = −8. However for sufficiently
large x, both F ′(x) F ′′(x) become positive and this implies that F has at least a
fixed point in (1,∞). Considering the latter case, now suppose that β = 2. Then
F ′(x) = 8α(2x−1)(4αx(x−1)+1) > 0 and F ′′(x) = 16α(1+12αx(x−1)+2α) > 0
for all x in [1,∞). Thus F has no fixed point in (1,∞), that is, x = 1 is the
maximal fixed point of F if and only if β = 2. �

From Theorem 1, we get 0 < x∗ < 1 and x∗4 = 1. (See Figure 1(a) and 1(b).)
Considering the existence of x∗2 and x∗3, let us start from (α, β) = (1, 1). Here only
x∗1 exists since x̂ = 1. For increment of α and β x∗2 appears in (x̂, 1] if F tangents to
45-degree line from below, see Fig. 1(c). If α or β increases further, then x∗3 appears
in (x∗2, 1], see Fig. 1(d).

To identify the implicit conditions about the existence of x∗2 and x∗3 define a mapping
φ:

(φ(β), β) ∈ A such that F ′(x∗2) = 1 and F ′′(x∗2) < 0. (13)

Then A can be divided into the following three subsets A1, A2 and A3:

A1 ≡ {(α, β) ∈ A | α < φ(β)},
A2 ≡ {(α, β) ∈ A | α = φ(β)},
A3 ≡ A \ (A1 ∪ A2).

(14)

Regarding the existence of x∗2 and x∗3 (i.e. S2 and S3) we have following states:

(i) If (α, β) ∈ A1, then neither x∗2 nor x∗3 exists,

(ii) if (α, β) ∈ A2, then only x∗2 exists and

(iii) if (α, β) ∈ A3, then both of x∗2 and x∗3 exist.

From Lemma 1, x∗1 always exists in all of the three cases above and x∗4 exists only if
β = 2. These three subsets are illustrated in Figure 2.

To conclude this subsection we state following theorem.

Theorem 1 There exists a subset of A in which all possible fixed points of F exist in
I. Therefore the adjustment process of (8) has four distinct equilibria.
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Figure 2: Existence of the equilibrium points.

Proof F ′(x) = 0 if x = 1
β

and then F ( 1
β
) = (1 − α)2 and F ′′( 1

β
) = 4α(1 − α)β2 ≤ 0.

Solving (1 − α)2 ≥ 1
β
, we have

α < 1 − 1√
β

or α > 1 +
1√
β
. (15)

Therefore for arbitrary β in [1, 2], x∗2 and x∗3 appear whenever α increases toward 2.
From Lemma 1, x∗1 always exists and x∗4 exists if β = 2. Thus if α > 1 + 1√

2
and β = 2,

then F has four fixed points in I , that is, all of S1, S2, S3 and S4 exist. �

3.2 Stabilities and bifurcations of equilibrium points

To identify the stability condition of each equilibrium point we linearize the system (8)
around the equilibria. Suppose that J is the Jacobian matrix of (8) such that

J ≡

⎛
⎜⎝ 0

dr1
dy

dr2
dx

0

⎞
⎟⎠ (16)

with eigenvalues λ1 = λ2 = λ. Then an equilibrium point Si is stable if and only if

|λ| ≡
∣∣∣∣dr1dy

dr2
dx

(x∗j , y
∗
j )

∣∣∣∣ = |F ′(x∗j )| < 1 (17)

where the derivatives are evaluated at Sj.
Here we use again the one-dimensional map F for checking the stabilities of the

equilibrium points. Si = (x∗j , r2(x
∗
j )) is a stable equilibrium point if and only if x∗j is a

stable fixed point of F . From Figure 1 we can see that x∗2 and x∗4 (i.e. S2 and S4) are
unstable whenever they exist. In addition, it can be numerically checked that x∗1 (i.e.
S1) is unstable for arbitrary parameter combinations in A. Therefore we only examine
the stability of x∗3 (i.e. S3).
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It is known that a dynamical system with logistics-like maps has flip bifurcations
when it loses stability. That is, for the system in this paper, (8) loses stability if
λ ≤ −1. Here we define a mapping ψ:

(ψ(β), β) ∈ A such that F ′(x∗3) = −1. (18)

Now A can be divided into following two subsets, B1 and B2:

B1 ≡ {(α, β) ∈ A | α < ψ(β)} and B2 ≡ A \B1. (19)

Regarding the stability condition of x∗3 (i.e. S3) we have the following states:

(i) If (α, β) ∈ B1 ∩A3, then S3 is stable and

(ii) if (α, β) ∈ B2, then S3 is unstable.

1.2 1.4 1.6 1.8 2
Alpha

1.2

1.4

1.6

1.8

2

B
et

a

A1

A3 ∩B1
B2

(a) stability condition of x∗
3 (b) bifurcation diagram

Figure 3: Stability and bifurcation of the equilibrium points.

In Figure 3 we calculate the implicit stability condition of x∗3 (Fig. 3(a)) and the
bifurcation diagram of F with respect to α and β (Fig. 3(b)). A dark-colored belt in
Fig. 3(b) corresponds to B1 ∩ A3 in Fig. 3(a). In white-colored regions in Fig. 3(b),
the dynamics generates non-periodic fluctuations, that is, MPE process of output may
be chaotic.

4 Statistical Dynamics

In this section we investigate the long-run statistical behavior of the system (8). Since
analytical investigations are difficult or not possible, numerical experiments are used
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to calculate the profits taken at the equilibriums (equilibrium profits hereafter) and
the long-run average profits taken along MPE process (average profits hereafter). We
compare the equilibrium profits and the average profits and then check that whether
firms can eventually benefit from chaotic fluctuations instead of settling at possible
equilibria. In Section 4.1 we focus on the case in which α = β = 2. In Section 4.2 we
extend the calculation to entire region of A.

4.1 Ergodic Chaos

Suppose that α = β = 2. Now the system (8) consists of symmetric reaction functions
r1(y) = (2y − 1)2 and r2(x) = (2x − 1)2 and has four equilibrium points, so that
equivalently, F has four fixed points in I such that

x∗1 =
3 −√

5

8
, x∗2 =

1

4
, x∗3 =

3 +
√

5

8
and x∗4 = 1. (20)

We evaluate profits of duopoly firms at each equilibrium point Sj = (x∗j , r2(x
∗
j )). These

are

Π1
1 = Π3

2 =
(
√

5 − 3)2b

64
,

Π2
1 = Π2

2 =
b

16
,

Π3
1 = Π1

2 =
(
√

5 + 3)2b

64
and

Π4
1 = Π4

2 = b.

(21)

where Πj
i denotes equilibrium profit of firm i at Sj.

It is known that if α = β = 2, the chaotic fluctuation generated by the adjustment
process is ergodic. From M-N [10], if chaos is ergodic, the average profits with MPE
process can be analytically derived. Let Π̄i be the average profit of firm 1 with MPE
process, then

Π̄i = lim
T→∞

1

T

T−1∑
i=0

Πi(xt, yt)

=
1

2

(∫ 1

0

Πi(r1(u), u)Φ(u)du+

∫ 1

0

Πi(u, r2(u))Φ(u)du

)

=
b

4
(22)

where

Φ(u) =
1

π
√
u(1 − u)

. (23)
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Constructing a profit ordering of each firm, we have

Π1
1 < Π2

1 < Π̄1 < Π3
1 < Π4

1

Π3
2 < Π2

2 < Π̄2 < Π1
2 < Π4

2.
(24)

Therefore duopoly firms cannot always benefit from chaotic fluctuations when α = β =
2.

4.2 Beneficial Chaos

Now we extend the analysis to entire region of A. From Fig. 3(b), we can see that
dynamical system (8) generates chaotic fluctuations although neither α nor β equals
2. However, since ergodicity does not hold in these cases, the average profits generated
by chaotic fluctuations with these parameter combinations can not be bounded by
theoretically derived values. Instead, we check the actual value of the average profits
with sufficiently large number of periods. For each combination of the parameters we
calculate possible equilibrium profits and the average profit under chaos and then check
the profit ordering of each firm.

(a) firm 1 (b) firm 2

Figure 4: Variation of the profit order.

Figure 4 illustrates the variation of the profit ordering of each firm3. The colors
of Fig.4 correspond to the preference ordering of firms about the average profit under
chaos. That is, each color depicts how many equilibrium points exist, at which the
profit is larger than the average profit. In white-colored regions no equilibrium profit

3For each parameter combination, we calculate the average profit for 1000 periods after a 2000-
period iterations.
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is larger than the average chaotic profit (i.e. Π̄i ≥ Πj
i > · · · ). As the color gets darker,

the preference ordering about the average profit becomes worse. In the black-colored
region, therefore, the average chaotic profit is less than all possible equilibrium profits
(i.e. Π̄i < Πj

i < · · · ).
Comparing Fig. 4(a) and Fig. 4(b) we can say that there exists a subset of A in

which, for both firms, the average chaotic profits are larger than all possible equilibrium
profits. Since this subset is in A1, only S1 exists and we have the profit ordering:

Π1
1 < Π̄1 and Π1

2 < Π̄2. (25)

1.6 1.7 1.8 1.9 2

0.2

0.4

0.6

0.8

1

x

β

(a) bifurcation cascade

1.6 1.7 1.8 1.9 2

0.1

0.2

0.3

Π1
1

Π1
2

Π̄1

Π̄2

Π

β

(b) variation of the average profits

Figure 5: An example of beneficial chaos (α = 1.1).

An example of beneficial chaos is illustrated in Figure 5, where α is fixed at ᾱ = 1.1
and β varies (1.5 ≤ β ≤ 2). As β increases MPE process becomes chaotic, (see Fig.
5(a)) and then the average profits of both firms becomes larger than the equilibrium
profits at S1, see Fig. 5(b).

5 Concluding Remarks

This paper presents two main results. Firstly, a Cournot duopoly market may be
chaotic if firms have U-shaped reaction functions. To construct an economic founda-
tion of U-shaped reaction functions, the investigation takes account of two patterns of
nonlinear, negative-positive production externalities. Secondly, heterogeneous duopoly
firms can eventually benefit from chaotic adjustment of output when production exter-
nalities are asymmetric. To demonstrate beneficial chaos, some numerical experiments
calculate the long-run average profits taken along chaotic trajectories and then com-
pare them with profits taken at possible equilibrium points. The comparison shows
that there exists a subset of parameter combinations for which, and for both the firms,
the long-run average profits are strictly larger than equilibrium profits. In that sense,
we can conclude that chaotic fluctuation can be beneficial in a heterogeneous market.
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Since chaotic fluctuations do not converge to an equilibrium state, they are thought
of as an unfavorable phenomenon in traditional economics. However, the results ob-
tained in this paper, in particular, the last numerical result, throws an interesting light
on the nature of complex chaotic dynamics and suggests a further study on duopoly
dynamics involving chaos worthy of consideration.
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