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Abstract

The main purpose of this paper is to consider effects caused by time
delays on stability of continuous models when the dynamic system is piece-
wise differentiable. To this end, we construct a continuous version of the
discrete Hickisan trade cycle model and introduce continuously distributed
time delays. It is demonstrated that time delays stabilize an otherwise un-
stable system, and a piecewisely-connected limit cycle is generated around
an unstable stationary state.
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1 Introduction
It has been a well-known fact of advanced market economies that national in-
come exhibits persistent and irregular fluctuations. Although linear models with
exogenous shocks may be aperiodic, it has been a main interest in studying
macro dynamics to detect endogenous sources of such dynamic behavior. If we
look at the classic literature of the 1940’s and 1950’s, we find that Kaldor (1940),
Hicks (1950) and Goodwin (1951) constructed nonlinear macro dynamic models
and gave rise to persistent endogenously-driven cyclic fluctuations. Since newly-
developing nonlinear theory involving chaos is introduced into economics in the
middle 1970’s, these "classic" nonlinear models in discrete-time and continuous-
time has been reconsidered with these new tools.
The Kaldor model, which originally has a continuous time scale, "has served

as the prototype model for nonlinear dynamic system in economics,"(Lorenz
(1993), p.43) and has been extended in many directions. Chang and Smyth
(1971) applies the Pointcare-Bendixon theorem to prove the existence of a
Kaldorian limit cycle. Lorenz (1993) deals with a continuous Kaldor model
to obtain a Hopf bifurcation to a limit cycle. Dana and Malgrange (1984)
shows that a discrete Kaldor model can be chaotic if the nonlinearity of in-
vestment function becomes stronger. Concerning the Goodwin model, which is
also originally continuous, Lorenz (1987) replaces autonomous outlays with a
time-dependent outlay function and shows that the modified Goodwin model
generates chaotic motion. Matsumoto (2008) shows that multiple limit cycles
may coexist when a stationary state of the continuous Goodwin model is locally
stable. Sushko, Puu and Gardini (2006) consider the discrete time Goodwin
model and a number of bifurcation sequences for attractors and their basins are
studied. The Hicks model, which was originally constructed in discrete time, is
also re-examined. Hommes (1993, 1995) shows that the discrete Hicks model
yields chaos when consumption and/or investment is distributed over several pe-
riods. Later, Gardini, Puu and Sushko (2006) complement Hommes’ work and
present a two-dimensional bifurcation diagram in which a birth of attracting
cycles with different periods is shown. Puu (2007) includes the stock of capital
in the Hicks model that generates chaos. These studies indicate that nonlin-
ear macro model of a dynamic economy may explain various complex dynamic
behavior of economic variables including national income. In the existing litera-
ture, however, a continuous version of the Hicks model has not been considered
yet. In consequence, little is known about its dynamic behavior.
The main purpose of this study is to shed light on this missing point and to

demonstrate the following main results in a continuous Hicksian model: a birth
of a limit cycle and the stabilizing effects of time delays. Following spirts of
the original Hicks model, we take an upper bound for the output and a lower
bound for the investment into account. These exogenous constraints imply
that a resultant dynamic system is formed from four subsystems: in the first
one neither constraints are effective, in the second one only upper constraint is
effective, in the third one only the lower constraints is effective and in the fourth
one both constraints are effective. Because of the switching of the subsystems
during the adjustment process, it is technically difficult to consider the whole
system analytically. In order to deal with this difficulty, we first construct a local
stability/instability condition, next show the existence of a limit cycle in a 2D
(i.e., two-dimensional) version of the model by applying the Poincarè-Bendixson

2



theorem and then numerically confirm that a 3D (i.e., three-dimensional) vesion
can generate a limit cycle. It is also demonstrated that the consumption and/or
the investment time lags have stabilizing effects in the both versions of the
model.
The paper is organized as follows. In Section 2 a continuous version of a

2D Hicksian model is constructed with continuously distributed time delays in
consumption and investment and its dynamics is considered. In Section 3, the
2D model is extended to a 3D model by introducing the further investment
lag, and we perform simulations to find what dynamics the extended model can
produce. Section 4 is for concluding remarks.

2 2D model
This section is divided into three parts. In Section 2.1, we introduce continu-
ously distributed time lags and construct a continuous version of the Hicksian
trade cycle model with floor and ceiling. In Section 2.2, the delay dynamic
equation is transformed into a hybrid dynamic system of ordinary differential
equations and then its local stability/instability conditions are considered. In
Section 2.3, the global stability of the locally stable stationary point is numer-
ically demonstrated and the existence of a piecewisely-connected limit cycle is
analytically and numerically shown when the stationary state is locally unstable.

2.1 Hybrid model with continuously distributed time lag

The discrete version of a Hicksian trade cycle model is given by

Ct = cYt−1,

It = max[β(Yt−1 − Yt−2), − IL],

Yt = min[Ct + It, Y
c].

(1)

Current consumption Ct is proportional to previous income Yt−1 where c is the
marginal propensity to consumer, 0 < c < 1. Investment It is proportional to the
growth in the national income, as long as it is larger than the investment floor,
−IL. Income Yt equals consumption plus investment, as long as it is smaller
than the income ceiling, Y c.
The three main features of the Hicksian model are the multiplier, the accel-

eration principle and the exogenous floor and ceiling. The first feature states
that the current consumption is a fixed fraction of the delayed national income.
The second shows that the investment is proportional to a fixed fraction of the
delayed change in national income. The third prevents the decline of investment
from depreciation and the increase of the output from the full-employment na-
tional income. Preserving these features, one possible continuous version of the
Hicksian trade cycle model is constructed by the following three equations:

C(t) = cY (t− θc)

I(t) = max
h
βẎ (t− θi), − IL

i
Y (t) = min

£
C(t) + I(t), Y C

¤
(2)
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where θc is the consumption time lag and θi is the investment time lag. The
similarity between (1) and (2) is clear. Since the lags are fixed in (2), this model
is suitable for analyzing a situation in which the lengths of the time lags are
certain. As pointed out by Hommes (1993,1995), Hicks presumes a more general
situation in which both consumption and induced investment are distributed
over several time periods. Taking account of this notion, a more appropriate
version of the Hicksian trade cycle model with continuous time scales may be
constructed by applying continuously distributed time delays:

C(t) = cY ec (t),

I(t) = max
h
βẎ ei (t), − IL

i
,

Y (t) = min
£
C(t) + I(t), Y C

¤
.

(3)

Here Y ec and Ẏ
e
i are the expectations of the national income and the expected

change of national income. It is assumed that these expectations are formed as
weighted averages of the past realized values, respectively, in the following way:

Y ec (t) =

Z t

0

1

θc
e−

t−s
θc Y (s)ds

and

Ẏ ei (t) =

Z t

0

1

θi
e−

t−s
θi Ẏ (s)ds,

where θc and θi are positive constant which are considered as the proxies for the
lengths of the time lags. The most weight is given to the most recent realized
values and then the weight is exponentially declining. This particular form of
the distribution function is often employed in order to simplify the dynamic
analysis.1 We call (3) the basic distributed delay model.
In the case of positive lags, differentiating the last two equations with respect

to time gives the following 2D system of ordinary differential equations2:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ẏ ec (t) =

1

θc
(Y (t)− Y ec (t)) ,

Ÿ ei (t) =
1

θi

³
Ẏ (t)− Ẏ ei (t)

´
,

(4)

It may be natural to assume that the investment lag is larger than or at least
equal to the consumption lag:

Assumption 1. θc ≤ θi.

1 It is possible to replace the exponential kernel function with a general kernel function,

1

n!

n

θ

n+1
(t− s)ne−

n(t−s)
θ

with finite n. However, this replacement may not change the qualitative aspects of the results
to be obtained below.

2See the Appendix for constructing the same dynamical system in a different way.
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Substituting the first and the second equations of (3) into the third one, we
have the following output equation in the basic distributed delay model:

Y (t) = min
h
cY ec (t) + max

h
βẎ ei (t), − IL

i
, Y C

i
(5)

It turns out that the feasible (Y ee , Ẏ
e
i )-region is divided into four subregions by

the following three partition lines,

βẎ ei (t) = −IL, cY ec (t) + βẎ ei (t) = Y
C and cY ec (t)− IL = Y C .

The four regions of the phase plane are defined as

RA = {(Y ec (t), Ẏ ei (t)) | βẎ ei (t) ≥ −IL and cY ec (t) + βẎ ei (t) ≤ Y C},

RB = {(Y ec (t), Ẏ ei (t)) | βẎ ei (t) ≥ −IL and cY ec (t) + βẎ ei (t) > Y
C},

RC = {(Y ec (t), Ẏ ei (t)) | βẎ ei (t) < −IL and cY ec (t)− IL ≤ Y C},

RD = {(Y ec (t), Ẏ ei (t)) | βẎ ei (t) < −IL and cY ec (t)− IL > Y C}.

The negative-sloping partition line cY ec +βẎ ei = Y
c distinguishes RA from RB,

the horizontal partition line βẎ ei = −IL distinguishes RA from RC , and finally,
the vertical partition line cY ec − IL = Y c distinguishes RC from RD. Switches
from one subregion to the another can occur only at points of the partition lines.
Before proceeding to the stability consideration of the delay hybrid system,

we examine the stability of the system when there are no time lags, as a bench
mark. To this end, we set θc = θi = 0 in (2) or Y ec = Y and Ẏ ei = Ẏ in (3) to
derive the dynamic system without time lags:

Y (t) = min[C(t) + max[βẎ (t),−IL], Y c]

If βẎ (t) > −IL and C(t) + βẎ (t) < Y c, we obtain a 1D differential equation,

Ẏ (t) =
1− c
β
Y (t).

It can be seen that Y (t) = Ẏ (t) = 0 is a stationary state, and applying the
method of separation of variable gives the complete solution,

Y (t) = Y0e
λt with λ =

1− c
β

> 0.

Here Y0 is an arbitrary initial point and λ is an eigenvalue. The positive eigen-
value implies instability of the stationary point. If βẎ (t) ≤ −IL, then, for all
t ≥ 0, we have

Y (t) = Y c if C(t)− IL ≥ Y c or Y (t) = −
IL
1− c if C(t)− IL < Y

c,

where Y c is the maximum value (i.e., the ceiling) that Y (t) can attain while
−IL/(1 − c) is the minimum (i.e., the floor). It is clear that although the
stationary point is unstable, a trajectory does not diverge globally due to the
ceiling and floor. In particular, if Y0 > 0, then Y (t) monotonically increases
until it hits the ceiling and then stays there afterward. On the other hand, if
Y0 < 0, then Y (t) monotonically decreases until it hits the floor and then stays
there afterward. We summarize these results:
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Theorem 1 A continuous Hicksian model with no time lags is locally monoton-
ically unstable, however, its output trajectory stays either at the ceiling or at the
floor after it arrives there.

2.2 Local stability

The national income is determined by (5). Since we have to distinguish be-
tween four regions, we analyze the stability/instability of system (4) under each
of these four regions in this section while the over-all hybrid stability will be con-
sidered later in Section 2.3. For notational simplicity, let x = Y ec and y = Ẏ

e
i .

We next formulate the dynamic system in each region.
In RA in which neither of the upper and lower bounds of (5) is effective, the

national income and its rate of change are determined by

Y (t) = cx(t) + βy(t)

and
Ẏ (t) = cẋ(t) + βẏ(t).

Substituting these into (4) yields the linear dynamic system:

⎛⎝ ẋ(t)

ẏ(t)

⎞⎠ =

⎛⎜⎜⎜⎝
−(1− c)

θc

β

θc

− c(1− c)
(θi − β)θc

− θc − cβ
(θi − β)θc

⎞⎟⎟⎟⎠
⎛⎝ x(t)

y(t)

⎞⎠ . (6)

It can be seen that the origin of the phase plane is the stationary state, which
will be denoted by εA. Stability of (6) will be discussed later in this subsection.
In RB the upper bound of national income is effective. The national income

and its rate of change can be written as

Y (t) = Y C

and
Ẏ (t) = 0.

Substituting these into (4) yields the relevant dynamic system for this region:

⎛⎝ ẋ(t)

ẏ(t)

⎞⎠ =

⎛⎜⎜⎜⎝
− 1
θc

0

0 − 1
θi

⎞⎟⎟⎟⎠
⎛⎝ x(t)

y(t)

⎞⎠+
⎛⎜⎝
Y c

θc

0

⎞⎟⎠ (7)

The stationary state is unique and denoted by εB = (xB, yB) where xB =
Y C and yB = 0. Since the eigenvalues of the coefficient matrix of system (7)
are real and negative (i.e., λ1 = − 1

θc
and λ2 = − 1

θi
), the stationary state is

monotonically stable under RB. Namely, any trajectory starting at a point
inside of RB approaches to the stationary state. The stationary state εB is,
however, not located in RB but in RA, therefore, the trajectory soon or later
crosses the partition line cx + βy = Y c and enters RA in which the dynamic
system switches to (6) from (7).
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In RC the lower bound of investment is effective, the national income and
its rate of change are

Y (t) = cx(t)− IL
and

Ẏ (t) = cẋ(t).

Substituting these into (4) yields the following dynamic system:

⎛⎝ ẋ(t)

ẏ(t)

⎞⎠ =

⎛⎜⎜⎜⎝
−1− c

θc
0

−c(1− c)
θcθi

− 1
θi

⎞⎟⎟⎟⎠
⎛⎝ x(t)

y(t)

⎞⎠−
⎛⎜⎜⎜⎝

IL
θc

cIL
θcθi

⎞⎟⎟⎟⎠ (8)

The stationary state is unique and denoted by εC = (xC , yC) with xC =
−IL/(1 − c) and yC = 0. Since the eigenvalues of the coefficient matrix of
(8) are negative (i.e., λ1 = − 1

θi
and λ2 = −1−cθc

), the stationary state of (8) is
monotonically stable under RC . Any trajectory starting at a point inside RC
is governed by system (8) as long as it stays within RC . The stationary state
is not located in RC but in RA. In consequence, the trajectory sooner or later
crosses the partition line βy = −IL and enters RA in which the dynamic system
is switched to (6) from (8).
Finally, in RD both of the upper and lower bounds are effective, the national

income and its rate of change are determined by

Y (t) = Y C

and
Ẏ (t) = 0.

Output determination in this region is the same as that in region RB. As a
result, the dynamic system in RD is the same as the one defined in RB and also
the components of the stationary state are the same as those of system (7). In
this sense, distinguishing RD from RB is expedient. Since RD is adjacent to RB
and RC and the stationary state of the dynamic system is in RA, any trajectory
starting within RD will move into RA through either RB or RC .
So far we have shown that all subsystems except (6) of the whole hybrid

system are stable and the stationary states of these subsystems are located in
RA, the domain of the subsystem (6). Any trajectory starting at a point inside
Ri for i = B,C,D crosses one of the partitioning lines and enters RA.
We now turn our attention to the stability of (6). The stability of εA depends

on the eigenvalues of the coefficient matrix of (6),

JA =

⎛⎜⎜⎜⎝
−1− c

θc

β

θc

− c(1− c)
(θi − β) θc

− θc − cβ
(θi − β) θc

⎞⎟⎟⎟⎠ .
The corresponding characteristic equation is

(θi − β) θcλ
2 + (θc + (1− c)θi − β)λ+ (1− c) = 0.
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The sum and product of the eigenvalues are given by

λ1 + λ2 = −
θc + (1− c)θi − β

(θi − β) θc

and
λ1λ2 =

1− c
(θi − β) θc

.

Since 0 < c < 1, the stationary state is locally asymptotically stable if the
parameters satisfy the following two conditions,

θi − β > 0

and
θc + (1− c)θi − β > 0,

under which the real parts of the eigenvalues are negative.
In Figure 1, the stability region in the (θi, θc) space is shaded in light-gray

and the instability region in dark-gray.3 The ratio between the horizontal line
and the vertical line is appropriately adjusted. Notice that the upward sloping
line distinguishing the shaded regions from the white region is the diagonal
line. In the white region above the diagonal line, Assumption 1 is violated.
So any combination of (θi, θc) in the white region is eliminated from further
considerations. Each of the shaded regions is further divided into two parts by
the zero-discriminant curve of the characteristic equation defined by

θc = (−1 + 2c)β + (1− c)θi ± 2
p
(1− c)(θi − β)cβ.

The stationary point εA is a focus for (θi, θc) in the region inside the zero-
discriminant curve and a node in the region outside. Roughly speaking, as
observed in Figure 1, the stationary state is unstable under smaller values of
the consumption and investment lags and becomes stable when either one or
both of the lags becomes larger. In other words, introducing adequate lag sizes
makes an otherwise unstable system stable. The stationary point of (6) is a
unique stationary state of the whole system (4) whereas the stationary points εi
for i = B,C,D of the sub-dynamic systems are not stationary points of (4). The
stability/instability of (6) is therefore equivalent to the local stability/instability
of (4). In summary, we have the following result:

Theorem 2 Given c and β, the basic distributed delay model is locally asymp-
totically stable in the light-gray region and locally unstable in the dark-gray re-
gion of the plane (θi, θc) shown in Figure 1 if an initial point is chosen in a
neighborhood of the stationary point εA.

3We refer to points denoted by SA, SB and U in Section 2.3.
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Figure 1. Partition of the stablity and instablity regions

It can be observed from Figure 1 that in the special case of θc = θi = θ, the
longer time lag can stabilize the system in the sense that the stationary state is
unstable for θ < β and stable for θ > β.

2.3 Global stability

So far, we have shown that the subsystems defined in RB, RC and RD are
locally stable if adjustments take place under the same regime throughout the
entire process and that their stationary points ε2i for i = B,C,D are located
in the inside of RA. We have also shown in Theorem 1 that the local dynamic
behavior of the whole system is the same as that of the subsystem (6), which
depends on a combination of investment and consumption time lags, θi and
θc. It remains to examine dynamic behavior in the large in which the system
is subject to more than one regime during the adjustment process. It has not
been mathematically proved yet that stability of all subsystems implies global
stability of the whole hybrid continuous system.4 We confirm the global stability
when the stationary state is locally stable by performing numerical simulations
and show the existence of a limit cycle when it is locally unstable by applying
the Pointcarè-Bendixson theorem.
The dynamic system (4) is written, with newly introduced variables, x and

y, by ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ(t) =

1

θc
(Y (t)− x(t)) ,

ẏ(t) =
1

θi

³
Ẏ (t)− y(t)

´
,

(9)

where Y (t) and Ẏ (t) take various forms, depending on the region in which a
trajectory is located. The isoclines of ẋ(t) = 0 and ẏ(t) = 0 are central to a
study of the motions of (9) in the (x, y) plane. It is derived from (7) and (8)
that the isoclines in RB and RD are given by x = Y c and y = 0 while those

4Szidarovszky (2008) proves a sufficient condition for the global stability of piece-wise
differentiable discrete dynamical systems.
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in RC by x = IL/c and y = −(c(1 − c)x + cIL)/θc. From (6), the ẋ = 0 locus
defined in RA is given by

y =
1− c
β
x (10)

which is positive-sloping and passes through the origin. Furthermore, it hits the
partition line cx + βy = Y c at point (Y c, 1−cβ Y

c) and the other partition line
βy = −IL at point (− 1

1−cIL,−
1
β IL). This ẋ = 0 locus is connected to the ẋ = 0

locus defined in RB at the former point and to ẋ = 0 locus defined in RC at the
latter point. Clearly ẋ > 0 in the left of this constant locus and ẋ < 0 in the
right. Provided that θc − cβ 6= 0, the ẏ = 0 locus defined in RA is presented by

y = −c(1− c)
θc − cβ

x. (11)

Its slope depends on the value of the denominator: it is positive if θc < cβ and
negative if the inequality is reversed.5 Furthermore, we assert that it becomes
steeper than the partition line cx+βy = Y c if cβ < θc < β and flatter if θc > β.
This ẏ = 0 locus is connected to the ẏ = 0 locus defined in RC at a point on the
partition line βy = −IL. It is, however, not connected to the ẏ = 0 locus defined
in RB. Since the two isoclines, (10) and (11), are linear and intersect only once
at the origin, the origin is the unique stationary point of the dynamic system.
These isoclines are depicted as bold lines in Figure 2 in which the regions RB
and RC are shaded in light-gray, RD in dark-gray and the white region is RA.
We now pursue global dynamic process when its stationary point is stable.

We fix θi = 2.5, c = 0.8, β = 1.25, IL = 10 and Y c = 15 throughout the
numerical analysis of this section. Points SA and SB in Figure 1 correspond
to (2.5, 0.9) and (2.5, 1.5), respectively, both of which are in the stable region.
We first take point SA for which (11) has a positive slope as θc < cβ. In Figure
2(left), the trajectories of (x, y) corresponding to 12 initial points of system (9)
are depicted. We replace it with point SB and the resultant simulations are
depicted in Figure 2(right) in which the slope of (11) is negative and flatter
than the slope of the cx + βy = Y c locus in absolute value as β < θc. It
is seen that the trajectories starting inside Ri for i = B,C,D move into RA.
Although little is known about the global behavior when the dynamic system
is piecewise linear, numerical simulations shown in Figures 2(left) and 2(right)
reveal that regardless of the initial value of x and y, the trajectories are finally
trapped inside region RA and therefore converge to the stationary point. These
numerical examples confirm the global stability of (9) when its stationary point
is locally stable. This is summarized in

Simulation Result 1. The basic distributed delay model is globally stable if
its subsystem (6) is stable.

5Needless to say (11) is not defined for θc = cβ. However the second equation of (6) implies
that the ẏ = 0 locus is a vertical line passing through the origin when θc = cβ.
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A. θc < cβ where θc = 0.9 B. θc > β where θc = 1.5

Figure 2. Global stability when εA is locally stable

One remark should be made. We simulated the model many times with
various combinations of the parameters’ values and found that the Simulation
Result 1 always holds. We incline to infer that the local stability of each sub-
system leads to the global stability of the hybrid system. However, this is not
proved mathematically yet.
We turn our attention to global dynamic behavior when the stationary state

is locally unstable. To this end, we, first, construct an invariant region R in
such a way that every trajectory starting outside the region enters it, and every
trajectory starting inside it remains inside. Let the stationary point εC be point
A and follow the forward trajectory of system (6) that rises out of the point A
until it hits the partition line αx+βy = Y C at point B. Let the intersection of
the horizontal line starting at point B with the vertical line x = Y C be point
C. The line segment CF is the x = Y C line and crosses the ẋ = 0 locus defined
in RA at point D, the horizontal βy = −IL line at point E and the ẏ = 0 locus
defined in RC at point F. We then draw the horizontal line starting at point
F and ending at point G. The line segment connecting points G and A is the
(1 − c)x = −IL line that crosses the βy = −IL line at point H. Removing a
small neighborhood of the stationary point from the region surrounded by the
curve AB, the line segments, BC, CF FG and GA. The resultant region is R,
which is bounded by the bold lines in Figure 3.
Next, we show that no trajectory leaves out of R. In particular, we ascertain

that every trajectory beginning on the boundary of region R remains on the
boundary or moves into the region. Let us considers, curve AB, line segments
DE and HA in RA. By (6), ẋ < 0 and ẏ < 0 on segment DE, ẋ > 0 and ẏ > 0
on segment HA and it is clear that any trajectory starting at a point on curve
AB moves forward to point B on the curve. Let us then consider segments, BC
and CD in RB . By (7), ẋ > 0 and ẏ < 0 on segment BC while ẋ = 0 and ẏ < 0
on segment CD. Lastly consider segments, EF , FG and GH in RC . By (8),
ẋ < 0 and ẏ < 0 on segment EF where ẏ = 0 at point F , ẋ < 0 and ẏ > 0 on
segment FG where ẋ = 0 at point G, and ẋ > 0 and ẏ > 0 on segment HA.
Therefore any trajectory beginning on one of these segments must either stay
there or moves inside the region R. It is also able to show that any trajectory
beginning outside R must move into it within a finite time as shown by dotted
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trajectories in Figure 3. Applying the Poincaré-Bendixon theorem reveals that
there exists at least one limit cycle in the region R. The limit cycle is depicted
as a bold curve within the region R and is bounded from above and below in
Figure 3. We are now in a position to summarize the result obtained:

Theorem 3 The basic distributed delay model gives rise to a constrained limit
cycle if its subsystem (6) is unstable.

Figure 3. Construction of an inveraint region R

3 3D model
Hommes (1993, 1995) extends the discrete 2D Hicksian model (1) to a discrete
3D model in which consumption and investment are distributed over several
periods and then shows that dynamic behavior of the system can become more
complicated. We also extend the continuous 2D Hicksian model (4) to a contin-
uous 3D model in which two different investment behavior are included: both
investments have the accelerators related to the changes in past realized in-
come, however, different investments have different weights to the changes. We
construct a hybrid continuous 3D Hicksian model in Section 3.1, investigate
stability of each subsystem in Section 3.2 and simulate the model to show the
existence of a piecewisely-connected limit cycle in Section 3.3.

3.1 Hybrid model with two types of investment

The 3D continuous Hicksian model is given by the following equations:

C(t) = cY ec (t)

I(t) = max
h
β1Ẏ

e
1 (t) + β2Ẏ

e
2 (t), − IL

i
Y (t) = min

£
C(t) + I(t), Y C

¤
(12)
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where the expected consumption Y ec and the expected changes in national in-
come Ẏ ei for i = 1, 2 are defined as exponentially-weighted averages of the actual
consumption and of the actual changes in national income in the past,

Y ec (t) =

Z t

0

1

θc
e−

t−s
θc Y (s)ds,

Ẏ e1 (t) =

Z t

0

1

θ1
e−

t−s
θ1 Ẏ (s)ds

and

Ẏ e2 (t) =

Z t

0

1

θ2
e−

t−s
θ2 Ẏ (s)ds.

Here, parameters β1 and β2 are the partial investment coefficients. The induced
investment is, if not less than −IL, the sum of proportions of the expected
changes in national income, which have different distribution functions. Para-
meters θ1 and θ2 are proxies for the investment lags which are assumed not to
be less than the proxy for the consumption lag:

Assumption 2. θc ≤ min[θ1, θ2]

We call (12) the extended distributed delay model. Differentiating these ex-
pected variables with respect to time yields the following 3D dynamic system
of ordinary differential equations,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẏ ec (t) =
1

θc
(Y (t)− Y ec (t))

Ÿ e1 (t) =
1

θ1

³
Ẏ (t)− Ẏ e1 (t)

´
Ÿ e2 (t) =

1

θ2

³
Ẏ (t)− Ẏ e2 (t)

´
(13)

where
Y (t) = min[cY ec (t) + I(t), Y

c]

and
I(t) = max

h
β1Ẏ

e
1 (t) + β2Ẏ

e
2 (t), − IL

i
.

As in the case of the 2D system, the (Y ec , Ẏ
e
1 , Ẏ

e
2 )-space is divided into four

regions by the following three partition planes:

β1Ẏ
e
1 + β2Ẏ

e
2 = −IL, cY ec + β1Ẏ

e
1 + β2Ẏ

e
2 = Y

C and cY ec = Y
C + IL.

The four subregions are denoted by R3i for i = A,B,C,D,

R3A = {(Y ee , Ẏ e1 , Ẏ e2 ) |
P2
i=1 βiẎ

e
i (t) ≥ −IL and cY ec (t) +

P2
i=1 βiẎ

e
i (t) ≤ Y C},

R3B = {(Y ee , Ẏ e1 , Ẏ e2 ) |
P2
i=1 βiẎ

e
i (t) ≥ −IL and cY ec (t) +

P2
i=1 βiẎ

e
i (t) > Y

C},

R3C = {(Y ee , Ẏ e1 , Ẏ e2 ) |
P2
i=1 βiẎ

e
i (t) < −IL and cY ec (t)− IL ≤ Y C},

R3D = {(Y ee , Ẏ e1 , Ẏ e2 ) |
P2
i=1 βiẎ

e
i (t) < −IL and cY ec (t)− IL > Y C}.

13



For notational simplicity, let x = Y ec , y = Ẏ e1 and z = Ẏ e2 .Then the dynamic
system in each region is defined accordingly. If there are no time lags (that is,
Y ec = Y, Ẏ

e
1 = Ẏ

e
2 = Ẏ ), the output determination equation of (12) is reduced

to (5) where β should be replaced with β1 + β2 and, therefore, the stationary
state is locally unstable without time lags.
In R3A, Y (t) and Ẏ (t) are defined by

Y (t) = cx(t) + β1y(t) + β2z(t)

and
Ẏ (t) = cẋ(t) + β1ẏ(t) + β2ż(t).

Substituting these relations into the dynamic equations (13) and rearranging
terms give the corresponding dynamic system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =
1

θc
(−(1− c)x(t) + β1y(t) + β2z(t))

ẏ(t) =
1

∆

µ
−θ2(1− c)

θc
x(t) +

µ
cθ2
θc

β1 − (θ2 − β2)

¶
y(t) +

µ
cθ2
θc
− 1
¶
β2z(t)

¶

ż(t) =
1

∆

µ
−θ1(1− c)

θc
x(t) +

µ
cθ1
θc
− 1
¶
β1y(t) +

µ
cθ1
θc

β2 − (θ1 − β1)

¶
z(t)

¶
(14)

where ∆ = (β1−θ1)(β2−θ2)−β1β2. The stationary point is unique and denoted
by ε3A = (xA, yA, zA) with xA = 0, yA = 0 and zA = 0. Stability of this system
will be discussed rigorously in Section 3.2. In R3B , Y (t) and Ẏ (t) are defined by

Y (t) = Y c

and
Ẏ (t) = 0.

Substituting these into the dynamic equations (13) gives the corresponding dy-
namic system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =
1

θc
(Y c − x(t)) ,

ẏ(t) =
1

θ1
(−y(t)) ,

ż(t) =
1

θ2
(−z(t)) .

(15)

The stationary point is unique and denoted by ε3B = (xB, yB , zB) with xB = Y
c,

yB = zB = 0. It is stable as the eigenvalues of the associated Jacobian matrix
are negative (i.e., λ1 = − 1

θc
, λ2 = − 1

θ1
and λ3 = − 1

θ2
). The stationary point is,

however, not located in R3B but in R
3
A.A trajectory starting inside R

3
B crosses

the partition plane, cx+ β1y + β2z = Y
C , and enters R3A where the governing

dynamic system is (14). In R3C , Y (t) and Ẏ (t) are defined by

Y (t) = cY ec (t)− IL

14



and
Ẏ (t) = cẎ ec (t).

The corresponding dynamic system is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =
1

θc
(−(1− c)x(t)− IL) ,

ẏ(t) =
1

θ1

µ
−c(1− c)

θc
x(t)− y(t)− c

θc
IL

¶
,

ż(t) =
1

θ2

µ
−c(1− c)

θc
x(t)− z(t)− c

θc
IL

¶
.

(16)

The stationary point is unique and denoted by ε3C = (xC , yC , zC) with xC =
− 1
1−cIL, yC = zC = 0. It is stable as the eigenvalues of the associated Jacobian

matrix are negative (i.e., λ1 = −1−cθc
, λ2 = − 1

θ1
and λ3 = − 1

θ2
). The stationary

point is, however, not located in R3C but in R3A.A trajectory starting inside
R3C crosses the partition plane, β1y + β2z = −IL, and enters R3A where the
governing dynamic system is (14). In R3D, Y (t) and Ẏ (t) are defined by

Y (t) = Y c

and
Ẏ (t) = 0.

The corresponding dynamic system is the same as (15) and its stationary state
is equivalent to ε3B.

3.2 Local stability conditions

The stationary point ε3A of the sub-system (14) is the inner point of R
3
A and the

unique stationary state of the whole system (13) while the stationary points ε3i
of the sub-dynamic systems for i = B,C,D are not stationary points of (13).
Our first job in this section is to find out whether or not the solution of (14)
converges to the stationary state if an initial point is chosen in a neighborhood
of the stationary point. The local stability is determined by the eigenvalues of
the Jacobian matrix of (14), which has the form,

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1− c
θc

β1
θc

β2
θc

−θ2c(1− c)
∆θc

1

∆

µ
cθ2
θc
− (θ2 − β2)

¶
1

∆

µ
cθ2
θc
− 1
¶
β2

−θ1c(1− c)
∆θc

1

∆

µ
cθ1
θc
− 1
¶
β1

1

∆

µ
cθ1
θc
− (θ1 − β1)

¶

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The corresponding characteristic equation is

a0λ
3 + a1λ

2 + a2λ+ a3 = 0

15



where the coefficients are given by

a0 = θc(θ1θ2 − β1θ2 − β2θ1),

a1 = (1− c)θ1θ2 + (θ1 + θ2)θc − β1(θc + θ2)− β2(θc + θ1),

a2 = (1− c)θ1 + (1− c)θ2 + θc − β1 − β2,

a3 = 1− c > 0.

According to the Routh-Hurwitz stability criterion, the necessary and sufficient
conditions that all roots of the characteristic equation have negative real parts
are the following: all coefficients ai for i = 0, 1, 2, are positive and a1a2−a0a3 >
0.
We examine the shapes of the ai = 0 curve for i = 0, 1, 2 and the a1a2 −

a0a3 = 0 curve in the parameter region Θ = {(θ1, θ2) | θ1 > 0 and θ2 > 0} and
then look into the positional relationships among these curves to confirm the
stability conditions.
We start with solving a0 = 0 for θ2 to obtain the following hyperbola,

θ2 =
β2θ1

θ1 − β1
, (17)

which has a horizontal asymptote and a vertical asymptote, respectvely, at

θ2 = β2 and θ1 = β1. (18)

We assert that this hyperbola divides Θ into two parts: a0 > 0 above the
hyperbola and a0 < 0 below. Next, solving a1 = 0 for θ2 yields also a hyperbola,

θ2 =
(θc − β2)θ1 − (β1 + β2)θc
(β1 − θc)− (1− c)θ1

, (19)

which has a horizontal asymptote and a vertical asymptote, respectively, at

θ2 =
β2 − θc
1− c and θ1 =

β1 − θc
1− c . (20)

We also assert that a1 > 0 above the hyperbola (19) and a1 < 0 below. Lastly,
solving a2 = 0 for θ2 gives a negative sloping line,

θ2 = −θ1 +
β1 + β2 − θc

1− c , (21)

where a2 > 0 above this line and a2 < 0 below.
To examine the positional relationship between the a0 = 0 curve and the

a1 = 0 curve, we subtract the asymptotes of (20) from these of (18) to obtain

βi −
βi − θc
1− c =

θc − cβi
1− c for i = 1, 2.

The following five cases are identified depending on the signs of θc − cβi for
i = 1, 2:
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Result (1). If θc < cmin[β1,β2] holds, then the a0 = 0 curve is below the
a1 = 0 curve.

Result (2). If cβ1 < θc < cβ2 holds, then the a0 = 0 curve intersects the
a1 = 0 curve from above to below at point (θL1 , θ

L
2 ) where

θL1 =
−β1θc +

p
β1β1 (c (β1 + β2)− θc) θc
cβ2 − θc

and

θL2 =
−β2θc −

p
β1β1 (c (β1 + β2)− θc) θc
cβ1 − θc

.

Result (3). If cβ2 < θc < cβ1 holds, then the a0 = 0 curve intersects the
a1 = 0 curve from left to right at point (θ`1, θ

`
2) where

θ`1 =
−β1θc −

p
β1β1 (c (β1 + β2)− θc) θc
cβ2 − θc

and

θ`2 =
−β2θc +

p
β1β1 (c (β1 + β2)− θc) θc
cβ1 − θc

.

Result (4a). If max[cβ1, cβ2] < θc and θc < c(β1 + β2) hold, then the a0 = 0
curve intersects the a1 = 0 curve twice at (θ

L
1 , θ

L
2 ) and (θ

`
1, θ

`
2).

Result (4b). If max[cβ1, cβ2] < θc and c(β1+ β2) < θc hold, then the a0 = 0
curve is above the a1 = 0 curve.

To examine the positional relationship between the a0 = 0 curve and the
a2 = 0 curve, we equate (21) to (17) and solve the resultant equation for θ1 to
have

θ±1 =
(2− c)β1 + cβ2 − θc ±

√
d02

2(1− c) (22)

where the discriminant d02 is given by

d02 = (θc − c (β1 + β2))
2 − 4β1β2(1− c)2. (23)

The two curves intersect if the discriminant is positive and do not if negative.
The threshold values of θc to make the discrimiant zero is obtained by solving
d02 = 0,

θ±c = c(β1 + β2)± 2(1− c)
p
β1β2. (24)

Then we have the following results;

Result (5). The a0 = 0 curve intersects the a2 = 0 curve twice if θc < θ−c or
θ+c > θc and is located aove the a2 = 0 curve otherwise.
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Lastly, to examine the positional relationship between the a1 = 0 curve and
the a2 = 0 curve, we equate (19) to (21) and solve the resultant equation for θ1
to have

θ1± =
(2− c)β1 + cβ2 − θc ±

√
d12

2(1− c)
where the discriminant d12 is given by

d12 = −3θ2c + 4c(β1 + β2)θc − 4β1β2. (25)

The two curves intersect if the discriminant is positive and do not if negative.
The threshold values of θc to make the discrimiant zero is obtained by solving
d12 = 0,

θc± =
2

3

³
c(β1 + β2)±

p
c2(β1 + β2)

2 − 3β1β2
´
.

Then we have the following results;

Result (6). The a1 = 0 curve intersects the a2 = 0 curve twice if c >
√
3β1β2

β1+β2

and is above the a2 = 0 curve otherwise.

We turn to confirm a shape of the a1a2 − a0a3 = 0 curve. To this end,
simplifying assumptions are made: β1 < β2 and c is given in such a way to
satisfy

c(
p
β1 +

p
β2)

2 < 4
p
β1β2 or c <

4
p
β1β2

(
p
β1 +

p
β2)

2
. (26)

Then we have the following results, the proof of which is given in the Appendix
B.

Result (7). The following three cases are identified in the appropriate region
of θ1 and θ2:

(7-1) If θc < θAc , then the a1a2−a0a3 = 0 curve is decribed by two downward-
sloping curves :

(7-2) If θAc < θc < θBc , then it is decsribed by a half-closed and half-opened
curve:

(7-3) If θBc < θc, then it is described by a closed curve where

θAc =

⎛⎝√c ¡pβ1 −
p
β2
¢
+

q
c
¡p

β1 −
p
β2
¢2
+ 4
p
β1β2

2

⎞⎠2

and

θBc =

⎛⎝√c ¡pβ2 −
p
β1
¢
+

q
c
¡p

β1 −
p
β2
¢2
+ 4
p
β1β2

2

⎞⎠2

.
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Two remarkes are given. The first is that θAc > θBc holds if β1 > β2 is
assumed. It then follows that θAc and θBc in (7-1), (7-2) and (7-3) should be
replaced each other. The second is that in the special case of β1 = β2 = β,
θAc = θBc = β holds and thus (7-2) should be eliminated: the a1a2 − a0a3 = 0
curve is decribed by two downward-sloping curves if θc < β and by a closed
curve if θc > β.
We verify Result (7) numerically. We fix c = 0.8 throughout the numerical

analysis below and illustrate the different shapes of the curve in Figure 4, chang-
ing values of β1,β2 and θc. We take θc = 0.5 and β1 = β2 = 0.6, which satisfy
the condition, θc < β. The loci of θ1 and θ2 for which a1a2 − a0a3 = 0 holds
are depicted as two downward-sloping curves in Figure 4(left). They divide the
region Θ into three parts. a1a2 − a0a3 > 0 holds in the shaded regions and the
inequality is reversed in the white region. In Figure 4(right), β1 = β2 = 0.6
is preserved, however, θc = 0.5 is replaced with θc = 0.65, which fulfills the
condition β < θc. As a result, the a1a2−a0a3 = 0 curve becomes a closed curve
and divides region Θ into two segments: the inside and outside parts of the
closed curve. Light gray and white colors of the divided regions have the same
meanings as those in Figure 4(left). In these two examples, β1 = β2 is taken
only for simplicity. Qualitatively similar curves can be obtained even if β1 6= β2.
However, when β1 6= β2, the third case emerges in which θc is larger than βi but
less than βj . The a1a2 − a0a3 = 0 curve becomes a half-closed and half-open
curve. In particular, the upper parts of the two curves are joined together and
the lower parts are still disconnected as depicted in Figure 4(middle) in which
θc = 0.65, β1 = 0.6 and β2 = 0.7 are taken to satisfy θAc < θc < θBc . On
the other hand, the lower parts become connected and the upper parts remain
disconnected if β1 > β2 and θBc < θc < θAc , although this case is not illustrated
in Figure 4.

Figure 4. Various shapes of the a1a2 − a0a3 = 0 curve

3.3 Global stability

We now determine the stability/instability region of Θ and simulate the model
under different values of the model’s parameters to find out what kind of dy-
namics the hybrid system (13) can generate. Before proceeding, we make the
following assumptions for the sake of analytical simplifity.

Assumption 3.
2
p
β1β2

(
p
β1 +

p
β2)

2
< c <

p
3β1β2

β1 + β2
.
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Four remarkes regarding Assumption 3 are given. First, the maximum values

of
2
√
β1β2

(
√
β1+
√
β2)

2
and

√
3β1β2

β1+β2
that are attained for β1 = β2 are

1
2 and

√
3
2 . It

would be natural to assume the marignal propensity consume c is larger than
the former but less than the latter.6 Second, the first inequality of Assumption
3 imply that the smaller threshold value, θ−c , given in (24) are positive. Third,
Result (6) and the second inequality imply that the a1 = 0 curve is always above
the a2 = 0 curve. Lastly, the second inequality also implies that the inequlity
in (26) always holds.
We first examine the case in which c = 0.8, θc = 0.35 and β1 = β2 = 0.6 are

taken. Under these parameter specifications, cβ1 = cβ2 = 0.48, θ
A
c = θBc = 0.6,

θ−c = 0.72 and θ+c = 1.2. In consequence, we have θc < min[cβ1, cβ2]. Result
(1) implies that the a0 = 0 curve is below the a1 = 0 curve. We also have
θc < θ−c < θ+c that leads to the positive d02. Result (6) and Assumption 3 imply
that the a1 = 0 curve does not intersect the a2 = 0 curve. Lastly, we have
θc < θAc . Result (7-1) implies that the a1a2 − a0a3 = 0 curve is described by
the two downward sloping bold curves. All curves are depicted in Figure 5(left).
The real hyperbolas and the dotted hyperbolas corresponds to the a0 = 0 curve
and the a1 = 0 curve, respectively. The a2 = 0 curve is the negative-sloping
dashed line. Points A and B are the intersections of the last two curves. By
(21) and (22), they are (3.52, 0.72) and (0.72, 3.52). The two bold curves are
the a1a2−a0a3 = 0 curve. It is seen that the lower a1a2−a0a3 = 0 curve passes
through points A and B because a0 = a2 = 0 imply a1a2 − a0a3 = 0.
Notice that a1a2 − a0a3 = −a0a3 < 0 on the a1 = 0 curve. Hence the

upper a1a2 − a0a3 = 0 curve is located above it. The Routh-Hurwitz stability
conditions are fulfilled above this a1a2 − a0a3 = 0 curve. Therefore the upper
a1a2 − a0a3 = 0 curve is the boundary between the stability region and the
instability region. In Figure 5(left), the stable region of Θ is shaded in light-
gray color, the region in which Assumption 2 is violated in dark-gray and the
remaining white region is the unstable region.
A simulation is performed by taking θ1 = 3, θ2 = 2.5, x(0) = 0.1, y(0) = 0.1

and z(0) = 0. The birth of a limit cycle is seen in Figure 5(right). The black dot
in Figure 5(left) denotes the selected point (3, 2.5) of the investment time lags.
Since the dot is in the white region, the stationary point is locally unstable. The
trajectory starting in the neighborhood of the stationary point moves away from
the stationary point.7 The dynamic system (13) is the hybrid system in which
the subsystems switch when the trajectory hits either of the ceiling or floor and
moves one regime to another during the adjustment process. The parts of the
floor and the ceiling are depicted as the shaded planes. It can be observed that
by these restrictions the trajectory is prevented from diverging and converges

6The violation of the second inequality does not harm the results to be obtained below,
however, makes the analysis complicated.

7 It depends on the value of the discriminant of the cubic characteristic equation whether
the trajectory explodes monotonically or oscillatory. The discrimiant is given by

(a1a2)
2 − 4a31a3 − 4a0a32 + 18a0a1a2a3 − 27(a0a3)2.

To decrease the complexity of further dividing Θ, the loci of θ1 and θ2 for which this dicrim-
inant is zero is not depicted in the following figures.
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to a limit cycle.

Figure 5. θc < cmin[β1,β2]

In the second example we deal with the case in which θc = 0.65, β1 = 0.6,
and β2 = 0.85. Since cβ1 = 0.48, cβ2 = 0.68, we have cβ1 < θc < cβ2. Result
(2) implies that the a0 = 0 curve intersects the a1 = 0 curve from above at
(θL1 , θ

L
2 ) = (0.71, 4.71) which is denoted as point C in Figure 6(left). θ

A
c = 0.611

and θBc = 0.835 leads to θAc < θc < θBc , with which Result (7-2) implies that
the a1a2 − a0a3 = 0 curve is a half-closed and half-opend curve. Further,
from (24), we have θ−c = 0.875 and θ+c = 1.446 that leads to θc < θ−c < θ+c .
Result (5) implies that the a0 = 0 curve intersect the a2 curve twice. These
intersections are denoted as point A = (0.82, 3.18) and point B = (2.93, 1.07)
in Figure 6(left). Under these parameter values, the division of Θ is presented
in Figure 6(left). For simulations, we choose the black dot in Figure 6(left) that
corresponds to the point of θ1 = 3.5 and θ2 = 2.5. Since the dot is in the white
region, the stationary point is unstable. However it can be observed in Figure
6(right) that the hybrid system (13) gives rise to a limit cycle which is bounded
from above and below.

Figure 6. cβ1 < θc < cβ2 and β1 < θc < β2

21



In the third and final example, we take θc = 0.65, β1 = 0.6 and β2 = 0.6
which generate cβ1 = cβ2 = 0.6, θAc = θBc = 0.6, θ−c = 0.72 and θ+c = 1.2.
We then have cmax(β1,β1) < θc, θc < c(β1 + β2), θ

B
c < θc and θc < θ−c .

Thus, Result (4a), Result (5) and Result (7-3) imply that the a0 = 0 curve
intersects, twice, not only the a1 = 0 curve at point C = (0.71, 3.88) and point
D = (3.88, 0.71) but also the a2 = 0 curve at point A = (0.88, 1.87) and point
B = (1.87, 0.88). They also imply that the a1a2 − a0a3 = 0 curve becomes a
closed curve. Since a0 = a2 = 0 at points A and B and a0 = a1 = 0 at point
C and D, the a1a2 − a0a3 = 0 curve passes through these points as depicted
in Figure 7 (left). The divided regions of Θ have the same meanings as those
of Figure 5 and 6 if the color is the same. Since the dot in Figure 7(left) is
the point of the selected θ1 = 3 and θ2 = 2.5 and is in the white region, the
stationary point is locally unstable. A numerical simulation in Figure 7(right)
shows that a limit cycle is born and bounded from above and below.

Figure 7. max[cβ1, cβ2] < θc and θc < c(β1 + β2)

We summarize these simulation results:

Simulation Result 2 The extended distributed delay model gives rise to a con-
strained limit cycle if (14) is unstable.

We simulate the model with even higher value of θc that satisfies c(β1+β2) <
θc and obtain qualitatively the same results. As can be seen in the right panels
of Figures 5, 6 and 7, the dark-shaded region becomes larger by making some
parts of the stable and unstable regions infeasible as θc increases. For some
higher values of θc, it is possible that the white region is absorbed by the dark-
gray regions and the dynamic system becomes stable for all θ1 and θ2 that fulfill
Assumption 2.

4 Concluding Remarks
We have considered the dynamics of a continuous Hicksian business cycle model
with floor and ceiling. It is shown first, as a bench mark, that the model without
time delays is always locally unstable. Introducing continuously distributed time
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delays in consumption and investment, the following two main results are then
demonstrated: (1) larger delays in consumption and/or investment stabilize the
stationary state; (2) an upper and/or lower bounded limit cycle is developed
when the stationary state is unstable.
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Appendix A

As has been shown, differentiating Y ec (t) with respect to t yields the differential
equation,

Ẏ ec (t) =
1

θc
(Y (t)− Y ec (t)) . (A-1)

Applying integration by parts for the right hand side of Ẏ ei (t), we have

Ẏ ei (t) =
1

θi
Y (t)− 1

θi
Y (0)e

− t
θi − 1

θi

Z t

0

1

θi
e
− t−s

θi Y (s)ds.

If we denote the last integral by Y Ei (t), differentiating it with respect to time
yields the differential equation

Ẏ Ei (t) =
1

θi

¡
Y (t)− Y Ec (t)

¢
(A-2)

and
Ẏ ei (t) =

1

θi
Y (t)− 1

θi
e
− t
θi Y (0)− 1

θi
Y Ei (t). (A-3)

In order to see the similarity between this system and the original system
(4), we confine our attention to the region R2A in which Y (t) = cY

e
c (t)+βẎ ei (t).

Substituting (A-3) into the right hand side of Y (t) = cY ec (t)+βẎ
e
i (t) and solving

the resultant equation for Y (t) imply that

Y (t) =
cθi

θi − β
Y ec (t)−

β

θi − β
Y Ei (t)−

β

θi − β
Y (0)e

− t
θi .

This is further substituted into (A-1) and (A-2) to obtain the dynamic equation
in terms of Y ei and Y

E
i :⎛⎝ Ẏ ec (t)

Ẏ Ei (t)

⎞⎠ =

⎛⎜⎝ β−(1−c)θi
θc(θi−β) − β

θc(θi−β)

c
θi−β − 1

θi−β

⎞⎟⎠
⎛⎝ Y ei (t)

Y Ei (t)

⎞⎠−
⎛⎜⎝

β
θc(θi−β)Y (0)e

− t
θi

β
θc(θi−β)Y (0)e

− t
θi

⎞⎟⎠ .
The characteristic equation of the Jacobian matrix of this system is identical
with that of (6). This means that this dynamic system generates the same
dynamics in a neighborhood of the equilibrium point as the original dynamic
system. Furthermore, if we choose the initial points of both system in such a
way that

Ẏ ei (0) = −
1

θi
Y Ei (0),

then they generate identical dynamics.
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Appendix B

This appendix proves Result (7). Collecting together terms of a1a2−a0a3 involving
the same powers of objects matching θ2 yields

a1a2 − a0a3 = Aθ22 +Bθ2 + C

where the coefficients A,B and C are given by

A = −(1− c) (β1 − θc − (1− c)θ1) ,

B = (β1 + β2 − (1− c)θ1 − θc)
2 − β2 (β1 + β2 + cθc)

and

C = (β1 + β2 − θ1)β1θc+(β1 + β2 − θc) (θ1 + θ2)−(β2θ1 + (β1 − θ1) θc) ((1− c)θ1 + θc) .

Solving Aθ22 +Bθ2 + C = 0 for θ2 yields two functions of θ1

ϕ1(θ1) =
−B +

√
B2 − 4AC
2A

and ϕ2(θ1) =
−B −

√
B2 − 4AC
2A

.

The discriminant B2−4AC is a fourth-order equation of θ1. Solving B2−4AC =
0 for θ1 gives the following four roots,

θ11 =
β1 −

p
cβ1θc −

q¡√
θc −

p
cβ1
¢2
θc −

¡√
cθc −

p
β1
¢2
β2

1− c ,

θ21 =
β1 −

p
cβ1θc +

q¡√
θc −

p
cβ1
¢2
θc −

¡√
cθc −

p
β1
¢2
β2

1− c ,

θ31 =
β1 +

p
cβ1θc −

q¡√
θc +

p
cβ1
¢2
θc −

¡√
cθc +

p
β1
¢2
β2

1− c
and

θ41 =
β1 +

p
cβ1θc +

q¡√
θc +

p
cβ1
¢2
θc −

¡√
cθc +

p
β1
¢2
β2

1− c .

Let us denote the discriminants of the first two equations and the last two
equations, respectively, as

f(θc) =
³p

θc −
p
cβ1

´2
θc −

³p
cθc −

p
β1

´2
β2

and

g(θc) =
³p

θc +
p
cβ1

´2
θc −

³p
cθc +

p
β1

´2
β2.

f(θc) can be factored as³
θc −

√
c
³p

β1 −
p
β2

´p
θc −

p
β1β2

´³
θc −

√
c
³p

β1 +
p
β2

´p
θc +

p
β1β2

´
.
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Since the first factor and the second factor are quadratic in
√
θc, the threshold

values of
√
θc that make f(θc) equal to zero are obtained by solving f(θc) = 0,

q
θ1,2c =

√
c
¡p

β1 −
p
β2
¢
±
q
c
¡p

β1 −
p
β2
¢2
+ 4
p
β1β2

2
.

and q
θ3,4c =

√
c
¡p

β1 −
p
β2
¢
±
q
c
¡p

β1 −
p
β2
¢2 − 4pβ1β2

2
.

In the similar way, g(θc) can be factored as³
θc +

√
c
³p

β1 +
p
β2

´p
θc +

p
β1β2

´³
θc −

√
c
³p

β1 +
p
β2

´p
θc −

p
β1β2

´
where the first factor is always positive. The threshold values of

√
θc that make

g(θc) equal to zero are obtained by solving g(θc) = 0,

q
θ5,6c =

√
c
¡p

β2 −
p
β1
¢
±
q
c
¡p

β2 −
p
β1
¢2
+ 4
p
β1β2

2
.

Since c
¡p

β1 −
p
β2
¢2 − 4pβ1β2 < 0 holds under Assumption 3,

q
θ3,4c are

complex conjugates. It can be found that the smaller roots of
q
θ1,2c and

q
θ5,6c

are real and negative, which does not make sense. Let us denote the larger roots
by θAc and θBc that are rewritten as

θAc =

⎛⎝√c ¡pβ1 −
p
β2
¢
+

q
c
¡p

β1 −
p
β2
¢2
+ 4
p
β1β2

2

⎞⎠2

and

θBc =

⎛⎝√c ¡pβ2 −
p
β1
¢
+

q
c
¡p

β2 −
p
β1
¢2
+ 4
p
β1β2

2

⎞⎠2

The assumption β1 < β2 leads to θAc < θBc . If 0 < θc < θAc , then g(θc) <
f(θc) < 0, which implies that θi1 for i = 1, 2, 3, 4 are complex. Hence ϕ1(θ1)
and ϕ2(θ1) take different values for any θ1 except θ̄1 = (β1 − θc)/(1− c). This
proves (7-1). If θAc < θc < θBc , then g(θc) < 0 < f(θc), which implies that θ

i
1

for i = 1, 2 are real and θi1 for i = 3, 4 are complex. Hence, ϕ1(θ
i
1) = ϕ2(θ

i
1) for

i = 1, 2, which means that both curves are connected at each of these two points.
As numerically shown below, θ11 is small enough to be less than θc or becomes
negative, depending on θc. It is eliminated from the appropriated region of Θ.
This proves (7-2). Lastly if θBc < θc, then 0 < g(θc) < f(θc), which implies that
θi1 is real and hence ϕ1(θ

i
1) = ϕ2(θ

i
1) for i = 1, 2, 3, 4. Both curves are connected

at each of these four points. As is also numerically shown below, since θ11 is small
enough to be less than θc or becomes negative while θ

4
1 is extremely large or

ϕ1(θ
4
1) = ϕ2(θ

4
1) becomes negative. these two points are also eliminated from

the appropriate region of Θ. This proves (7-3).
Taking c = 0.8, β1 = 0.7 and β2 = 0.75, we numerically confirm (7-2) and (7-

3). First, we have θAc ' 0.702 and θBc ' 0.747. Suppose θc = 0.72, which satisfies
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θAc < θc < θBc . Then we have the connecting points, (θ
1
1,ϕi(θ

1
1)) ' (0.07, 10.7)

and (θ21,ϕi(θ
2
1)) ' (0.59, 5.1) for i = 1, 2. In Figure A(left), the real curve is the

θ2 = ϕ1(θ1) locus and the dotted curve is the θ2 = ϕ2(θ1) locus. Two curves are
seen to be connected at the point (θ21,ϕi(θ

2
1)). Next suppose θc = 0.76, which

satisfies θBc < θc. The four connecting points are (θ
1
1,ϕi(θ

1
1)) ' (−0.24, 18.2),

(θ21,ϕi(θ
2
1)) ' (0.72, 4.09), (θ31,ϕi(θ31)) ' (5.82, 0.828) and (θ41,ϕi(θ41)) ' (7.70,−0.14).

Two curves are connected at the second and third points and constructs a closed
curve in Figure A(right) in which the first point and the fourth points are elim-
inated.

Figure A. a1a2 − a0a3 = 0 curves
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