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Abstract

Dynamic extensions of the delayed Goodwin’s business cycle model are
examined. Conditions for the local stability of the stationary state will
be determined in the case of fixed and continuously distributed time lags.
These conditions and the stability regimes will be compared with different
types of weighting functions. We will show that the stability regions for
continuously distributed time delay are always larger than in the case of
fixed time lags and they converge to the stability region with fixed time
lag as the variance of the delay converges to zero..
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1 Introduction
In this paper the business cycle model of Goodwin (1951) will be examined in
which a time delay is introduced between decision to invest and the correspond-
ing outlays. There is always a time lag due to the decision making process and
the decision implementation. Time delays can be modeled in two different ways.
In the first case fixed time delays are considered, and the characteristic equa-
tions of the corresponding dynamic equations are the mixtures of polynomial
and exponential terms resulting in an infinite spectrum. The stability theory
of such dynamic equations is much more complicated than that of ordinary dif-
ferential equations without delays. A comprehensive summary of the relevant
results is presented, for example, in Kuang (1993). The alternative approach
is to consider continuously distributed time lags, when at each time period t, a
weighted average of all data from zero up to t is used in the dynamic equations.
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This method is very realistic, since the length of a time delay is usually uncer-
tain, so if it is considered a random variable, continuously distributed time lags
represent average delayed data. Very often firms do not want to react to sudden
changes, they prefer to react to an average of past information. In the case of
continuously distributed time delays with special weighting functions, we have
a finite spectrum similarly to models without time delays.
In this paper we will compare the delayed Goodwin’s model with fixed and

continuously distributed time lags. We will examine local stability of the sta-
tionary state and in the case of stability loss the possibility of the birth of limit
cycles will be examined via Hopf bifurcation. In Matsumoto and Szidarovszky
(2009), a linearized version of Goodwin’s model with fixed lag is compared with
the one with continuously distributed lag having the exponentially declining
weighting function. It is demonstrated that both models generate the same dy-
namics when the lags are small and different dynamics when they are large. In
this study we focus on more general weighting functions
The paper develops as follows. After the basic model without time delay will

be introduced and solved, fixed time lags will be considered. We will determine
the stability region in the parameter space of the model. Then the case of
continuously distributed time delay will be examined first with exponential and
gamma type weighting functions. In addition to deriving stability conditions
and determining the stability regions, we will compare these results for different
types of weighting functions. In the last section conclusions will be drawn.

2 Goodwin’s Business Cycle Model
This section is divided into three parts. In Section 2.1, we recapitulate the
basic elements of Goodwin’s model. We, then, adopt an explicit treatment of
the investment lag into the model. We will examine fixed time delays in Section
2.2 and continuously distributed time delays in Section 2.3, and we will show
how such a delay affects the characteristics of the cyclic dynamics.

2.1 Basic Model

Goodwin (1951) presents five different versions of the nonlinear accelerator
model. The first version assumes a piecewise linear function with three lev-
els of investment, which can be thought as the crudest or simplest version of
the non-linear accelerator. This is a text-book model that can give a simple
exhibition on how nonlinearities give rise to endogenous cycles without relying
on structurally unstable parameters, exogenous shocks, etc. The second version
replaces the piecewise linear investment function with a smooth nonlinear in-
vestment function. Although persistent cyclical output oscillations are shown
to exist, the second version includes a unfavorable phenomenon, namely, dis-
continuous investment jump, which is not realistic in the real economic world.
"In order to come close to reality" (p.11, Goodwin (1951)), an investment lag is
introduced in the third version. However, no analytical considerations are given
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to this version. The existence of a business cycle is confirmed in the fourth
version, which is a linear approximation of the third version with respect to the
investment lag. And finally, alternation of autonomous expenditure over time
is taken into account in the fifth version.
To find out how nonlinearity can generate endogenous cycles, we review the

second version of Goodwin’s model, which we call the basic model,⎧⎨⎩ εẏ(t) = k̇(t)− (1− α)y(t),

k̇(t) = ϕ(ẏ(t)).

(1)

Here k is the capital stock, y the national income, α the marginal propensity
to consume, which is positive and less than unity, and the reciprocal of ε a
positive adjustment coefficient. The dot over variables stands for time differen-
tiation. The first equation of (1) defines an adjustment process of the national
income. Accordingly, national income rises or falls if investment is larger or
smaller than savings. The second equation, in which ϕ(ẏ(t)) denotes the in-
duced investment, describes an accumulation process of capital stock based on
the acceleration principle. According to this principle, investment depends on
the rate of changes in the national income. A distinctive feature of Goodwin’
model is to introduce a nonlinearity into the investment function in such a way
that the investment is proportional to the change in the national income in the
neighborhood of the equilibrium income but becomes inflexible (i.e., less elastic)
for extremely larger or smaller values of the income. This nonlinear accelera-
tion principle is crucial in obtaining endogenous cycles in Goodwin’s model. We
will next retain this nonlinearity assumption and specify its explicit form. On
the other hand, we depart from Goodwin’s non-essential assumption of positive
autonomous expenditure and will work with zero autonomous expenditure for
the sake of simplicity. A direct consequence of this assumption is that an equi-
librium solution or a stationary point of the basic model is y(t) = ẏ(t) = 0 for
all t.
Inserting the second equation of (1) into the first one and moving the terms

on the left hand side to the right gives the single dynamic equation for the
national income y,

εẏ(t)− ϕ(ẏ(t)) + (1− α)y(t) = 0. (2)

This is a nonlinear differential equation. Although it is one-dimensional, its non-
linearity prevents deriving an explicit form of the solution. In spite of this simple
form, it is possible to detect local dynamics by examining its linearized version
in a neighborhood of the stationary point and global dynamics by performing
numerical simulations.
The linear version of the income dynamic equation (2) is

εẏ(t)− νẏ(t) + (1− α)y(t) = 0, (3)

where ν = ϕ0(0) is the slope of the investment function at the stationary point.
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This is a first-order ordinary differential equation. Applying separation of vari-
ables gives a complete solution,

y(t) = y0e
λt with λ =

1− α

ν − ε
, (4)

where y0 is an initial condition. The stationary point is locally asymptotically
stable or unstable according to whether the eigenvalue λ is negative or positive.
Since 1−α is the positive marginal propensity to save, the sign of the eigenvalue
depends on whether the numerator is positive or negative. Thus the stationary
point is locally asypmptotically stable if ν < ε and unstable if ν > ε.

2.2 Delay Model with Fixed Time Lags

Due to the fact that in real economy, plans and their realizations need time to
take effects, Goodwin (1951) introduces the investment lag, θ, between decisions
to invest and the corresponding outlays. Inserting θ into the investment function
of the basic model yields the third version of his model,

εẏ(t)− ϕ(ẏ(t− θ)) + (1− α)y(t) = 0. (5)

This is a neutral delayed nonlinear differential equation, which we call the fixed
delay model. Goodwin does not analyze dynamics generated by this fixed delay
model. Furthermore, to the best of our knowledge, no analytical solutions of the
delayed model are available yet. However, it is possible, again, to investigate
dynamics of the delayed model by using linearization for local dynamics and
numerical simulations for global dynamics. Since a cyclic oscillation has been
shown to exist in the basic model, our main concern is to see how the presence of
the investment lag affects characteristics of such a slow-rapid cycle. To this end,
we analytically investigate the stability of the cycle generated in the linearized
model and numerically detect what effects are caused by the lag on cyclical
dynamics.
The fixed delay model is autonomous and its special solution is constant

(i.e., y(t) = 0) so that its linearized version takes the form of a linear neutral
autonomous delay differential equation,

εẏ(t)− vẏ(t− θ) + (1− α)y(t) = 0. (6)

It is well known that if the characteristic polynomial of a linear neutral equation
has roots only with negative real parts, then the stationary point is locally
asymptotically stable. The normal procedure for solving this equation is to try
an exponential form of the solution. Substituting y(t) = y0e

λt into (6) and
rearranging terms, we obtain the corresponding characteristic equation:

ελ− νλe−λθ + (1− α) = 0.

To check stability, we determine conditions under which all roots of this
characteristic equation lie in the left or right half of the complex plane. Dividing
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both sides of the characteristic equation by ε and introducing the new variables
A = 1−α

ε and B = −ν
ε , we rewrite the characteristic equation as

λ+A+Bλe−λθ = 0. (7)

Kuang (1993) derives explicit conditions for stability/instability of the n-th
order linear real scalar neutral differential difference equation with a single delay.
Since (7) is a special case of the n-th order equation, applying the result of Kuang
(1993, Theorem 1.2) implies that the real parts of the solutions of equation (7)
are positive for all θ if |B| > 1. Hence we have the following result.

Theorem 1 If ν > ε, then the stationary point of (6) is unstable for all θ > 0.

If v < ε (i.e., |B| < 1), (7) has at most finitely many eigenvalues with positive
real part. The roots of the characteristic equation are functions of the delay. As
the lengths of the delay change, the roots may change their signs from positive
to negative or vise versa so that the stability of the solution may also change.
Such phenomena are often referred to as stability switches. We will next show
that such stability switchings cannot take place in the fixed delayed model.
For the following discussion we assume that v < ε. The case v = ε will be

treated later as a critical case. It can be checked that λ = 0 is not a solution
of (7) because substituting λ = 0 yields A = 0 that contradicts A > 0. In the
case of v < ε, Kuang (1993, Theorem 1.4) shows that if the stability switches at
θ = θ̄, then (7) must have a pair of pure conjugate imaginary roots with θ = θ̄.
Thus to find the critical value of θ̄, we assume that λ = iω, with ω > 0 being a
root of (7) for θ = θ̄, θ̄ ≥ 0. Substituting λ = iω into (7), we have

A+Bω sinωθ = 0,

and
ω +Bω cosωθ = 0.

Moving A and ω to the right hand side and adding the squares of the resultant
equations, we obtain

A2 + (1−B2)ω2 = 0.
Since A > 0 and 1−B2 > 0 as |B| < 1 is assumed, there is no ω that satisfies the
above equation. In other words, there are no roots of (7) crossing the imaginary
axis when θ increases. Therefore, there are no stability switches for any θ.
In case ε = ν in which |B| = 1, the characteristic equation becomes

λ(1− e−λθ) +A = 0. (8)

It is clear that λ = 0 is not a solution of (8) since A > 0. Thus we can assume
that a root of (8) has non-negative real part, λ = u + iv with u ≥ 0 for some
θ > 0. From (8), we have

(u+A)2 + v2 = e−2uθ(u2 + v2) ≤ (u2 + v2),
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where the last inequality is due to e−2uθ ≤ 1 for u ≥ 0 and θ > 0. Hence

2uA+A2 ≤ 0,

where the direction of inequality contradicts the assumption that u ≥ 0 and
A > 0. Hence it is impossible for the characteristic equation to have roots with
nonnegative real parts. Therefore, all roots of (8) must have negative real parts
for all θ > 0. Summarizing the above discussions gives the following theorem.

Theorem 2 In case of ν ≤ ε, the the stationary point of (6) is asymptotically
stable for all θ > 0.

Combining Theorems 1 and 2, we can state that the stationary state is
asymptotically stable if ν ≤ ε and unstable if ν > ε. The stationary state is
asymptotically stable on the boundary of the stable region.

2.3 Delay Model with Continuously Distributed Lags

Continuously distributed time delay is an alternative approach to deal with a
time lag in investment. If the expected change of national income is denoted by
ẏe(t) at time t and is based on the entire history of the actual changes of the
national income from zero to t, then the dynamic system can be written as the
system of integro-difference equations,

εẏ(t)− ϕ(ẏe(t)) + (1− α)y(t) = 0,

ẏe(t) =

Z t

0

w(t− s, θ,m)ẏ(s)ds,
(9)

where the weighting function is

w(t− s, θ,m) =

⎧⎪⎪⎨⎪⎪⎩
1

θ
e−

t−s
θ if m = 0,

1

m!

³m
θ

´m+1
(t− s)me−m(t−s)

θ if m ≥ 1.

Herem is a nonnegative integer and θ is a positive real parameter, which is asso-
ciated with the length of the delay. We call this dynamic system the distributed
delay model.
To examine local dynamics of the above system in the neighborhood of the

stationary point, we consider the linearized version,

εẏ(t)− ν

Z t

0

w(t− s, θ,m)ẏ(s)ds+ (1− α)y(t) = 0.

Looking for the solution in the usual exponential form

y(t) = y0e
λt and ẏ(t) = λy0e

λt,
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substituting them into the linearized version, we obtain

ελ− νλ

Z t

0

w(t− s, θ,m)e−λ(t−s)ds+ (1− α) = 0.

Introducing the new variable z = t− s simplifies the integral asZ t

0

w(t− s, θ,m)e−λ(t−s)ds =
Z t

0

w(z, θ,m)e−λzdz.

By letting t→∞ and assuming that Re(λ) + m
θ > 0, we haveZ ∞

0

1

θ
e−

z
θ e−λzdz = (1 + λθ)−1 if m = 0,

and Z ∞
0

1

m!

³m
θ

´m+1
zme−

mz
θ e−λzdz = (1 +

λθ

m
)−(m+1) if m > 1.

That is, Z ∞
0

w(z, θ,m)e−λzds =

µ
1 +

λθ

q

¶−(m+1)
with

q =

⎧⎨⎩ 1 if m = 0,

m if m ≥ 1.
Then the characteristic equation becomes

(ελ+ (1− α))

µ
1 +

λθ

q

¶m+1
− νλ = 0. (10)

If there are no time delays, θ = 0, then the above equation is reduced to the
same characteristic equation as the one we have already derived above. We will
next examine some simple cases in which analytical results can be obtained.
As mentioned in the Introduction, the case ofm = 0 is rigorously discussed in

Matsumoto and Szidarovszky (2009), we examine stability in cases with m ≥ 1.
We expand the characteristic equation (10) by using the binomial theorem to
obtain,

a0λ
m+2 + a1λ

m+1 + ...+ am+1λ+ am+2 = 0, (11)

where the coefficients ai are defined as

a0 = εθm+1 > 0,

ak =

½µ
m+ 1
k

¶
mε+

µ
m+ 1
k − 1

¶
(1− α)θ

¾
mk−1θm+1−k > 0 for k = 1, 2, ...m,

am+1 = mm{mε+ (m+ 1)(1− α)θ −mν} R 0,

am+2 = mm+1(1− α) > 0.
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According to the Routh-Hurwitz stability criterion, the necessary and sufficient
conditions that all roots of the characteristic equation (11) have negative real
parts are the following:

(1) the coefficients are positive, ak > 0 for k = 1, 2, ...2m+ 1,

(2) the principle minors of the Routh-Hurwitz determinant are positive,

Dm
2 =

¯̄̄̄
a1 a0
a3 a2

¯̄̄̄
> 0, Dm

3 =

¯̄̄̄
¯̄ a1 a0 0
a3 a2 a0
a5 a4 a3

¯̄̄̄
¯̄ > 0, Dm

4 =

¯̄̄̄
¯̄̄̄ a1 a0 0 0
a3 a2 a1 a0
a5 a4 a3 a2
a7 a6 a5 a4

¯̄̄̄
¯̄̄̄ > 0, ...

Case 1. m = 1

Substituting m = 1 into (11) yields

a0λ
3 + a1λ

2 + a2λ+ a3 = 0, (12)

where

a0 = εθ2 > 0,

a1 = (2ε+ (1− α)θ)θ > 0,

a2 = ε+ (1− α)2θ − ν R 0,
a3 = 1− α > 0.

It can be seen that the sign of a2 is not determined. In addition to a2 > 0,
the Routh-Hurwitz criterion requires that the following second- and third-order
Routh-Hurwitz determinants are positive,

D1
2 =

¯̄̄̄
a1 a0
a3 a2

¯̄̄̄
> 0 and D1

3 =

¯̄̄̄
¯̄ a1 a0 0
a3 a2 a1
0 0 a3

¯̄̄̄
¯̄ > 0.

Since D1
3 = a3D

1
2 and a3 = 1− α > 0, we have

sign
¡
D1
3

¢
= sign

¡
D1
2

¢
,

where
D1
2 = θ

©
2(ε+ (1− α)θ)2 − (2ε+ (1− α)θ)ν

ª
. (13)

Notice that D1
2 = a1a2 − a0a3 > 0 requires that a2 > 0 since all other

coefficients are positive. Therefore the only stability condition is D1
2 > 0, that

is,

ν <
2(ε+ (1− α)θ)2

2ε+ (1− α)θ
.

Therefore we have an explicit equation for the partition line,

ν =
2(ε+ (1− α)θ)2

2ε+ (1− α)θ
. (14)
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Let g1(θ) denote the right hand side, then g1(0) = ε and for θ > 0, both
derivatives g01(θ) and g

00
1 (θ) are positive. Figure 4 with m = 1 shows the curve

of this function, and the stationary state is locally asymptotically stable if the
point (θ, ν) is under this partition line.
We now return to equation (12) to show the possibility of the birth of a

limit cycle with continuously distributed delay by applying the Hopf bifurcation
theorem. According to the theorem, we can establish the existence if the cubic
characteristic equation has a pair of pure imaginary roots and the real part of
these roots vary with a bifurcation parameter. We select ν as the bifurcation
parameter and then calculate its value at the point for which loss of stability
just occurs. Substituting (14) into (12), we can obtain a factorized expression
of the characteristic equation along the partition line,

(2ε+ (1− α)θ + εθλ)(1− α+ (2εθ + (1− α)θ2)λ2) = 0,

which can be explicitly solved for λ. One of the characteristic roots is real and
negative and the other two are pure imaginary:

λ1 = −2ε+ (1− α)θ

εθ
< 0,

λ2,3 = ±i
s

1− α

2εθ + (1− α)θ2
= ±iω.

In order to apply the Hopf bifurcation theorem, we need to check whether
the real part of the conjugate complex roots change its sign as the bifurcation
parameter passes through its critical value. Suppose that λ depends on ν, λ(ν),
and then implicit-differentiation of (12) shows that

¡
3εθ2λ2 + 2

¡
2εθ + (1− α)θ2

¢
λ+ ε+ (1− α)2θ − ν

¢ dλ
dν
= λ.

Thus

sign

∙
d(Reλ)

dν

¸
λ=iω

= sign

"
Re

µ
dλ

dν

¶−1#
λ=iω

= sign
£
2(2εθ + (1− α)θ2)

¤
where we used the facts that the terms with λ are imaginary and the constant
terms are real. Therefore we have

d(Reλ)

dν

¯̄̄̄
λ=iω

> 0.

This implies that the roots cross the imaginary axis at iω from left to right as
ν increases. Therefore the Hopf bifurcation theorem applies, and thus there is
the possibility of the birth of limit cycles around the stationary point. The left
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part of Figure 3 illustrates a limit cycle in a 3D space when the stationary state
is unstable, and the right part shows an orbit approaching the stationary state
when it is stable.1

Figure1. Limit cycle and stable trajectory in 3D system

Case 2. m = 2

The characteristic equation is quartic in λ,

a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0

with coefficients
a0 = εθ3 > 0,

a1 = (6ε+ θ(1− α))θ2 > 0,
a2 = (2ε+ θ(1− α))6θ > 0,
a3 = 4(2ε+ 3(1− α)θ)− 2ν) R 0,
a4 = 8(1− α) > 0

1z(t) and w(t) are defined as follows:

z(t) =
t

0

1

θ2
(t− s) e−

t−s
θ ẏ(s)ds

and

w(t) =
t

0

1

θ
e−

t−s
θ ẏ(s)ds,

furthermore ν is selected as

2(ε+ (1− α)θ)2

2ε+ (1− α)θ
+ 0.05 in the unstable case,

and
2(ε+ (1− α)θ)2

2ε+ (1− α)θ
− 0.05 in the stable case.
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All coefficients are positive except a3 whose sign is not determined. The Routh-
Hurwitz determinants can be defined in the same way as before,

D2
2 =

¯̄̄̄
a1 a0
a3 a2

¯̄̄̄
, D2

3 =

¯̄̄̄
¯̄ a1 a0 0
a3 a2 a1
0 a4 a3

¯̄̄̄
¯̄ and D2

4 =

¯̄̄̄
¯̄̄̄ a1 a0 0 0
a3 a2 a1 a0
0 a4 a3 a2
0 0 0 a4

¯̄̄̄
¯̄̄̄ ,

where

D2
2 = 2θ3

©
32ε2 + 3(1− α)2θ2 + ε(18θ(1− α) + 4ν)

ª
> 0,

D2
3 = 8θ3

©
8(2ε+ (1− α)θ)3 − 2(28ε2 + 12(1− α)εθ + 3(1− α)2θ2)ν − 8εν2

ª
,

D2
4 = 8(1− α)D2

3.

Notice that condition D2
3 = a3D

2
2 − a4a21 > 0 requires for a3 to be positive,

since all other quantities are positive. Therefore, the only stability condition is
D2
3 > 0, that is,

g2(θ) = 8θ
3
©
8(2ε+ (1− α)θ)3 − 2(28ε2 + 12(1− α)εθ + 3(1− α)2θ2)ν − 8εν2

ª
> 0,

so we obtained an explicit expression of the partition line

8(2ε+ (1− α)θ)3 − 2(28ε2 + 12(1− α)εθ) + 3(1− α)2θ2)ν − 8εν2 = 0. (15)

Since g2(θ) is a concave parabola with g2(0), there is a unique positive root ν(θ),
and the stationary state is locally asymptotically stable if ν < ν(θ), that is, the
point (θ, ν) is under the partition line. It is shown in Figure 4 with m = 2.
Simple, but lengthy calculation shows that the delay model with m = 1 has a
larger stable region that with m = 2 by verifying that

g2

µ
2(ε+ (1− α)θ)2

2ε+ (1− α)θ

¶
< 0.

By the same procedure as in the case of m = 1 above, we can show the birth of
a limit cycle in the case of m = 2 as well.
After we repeat the above procedure for the values of m = 1, 2, 3, 4, 5, the

five partition lines with m from 1 to 5 are depicted in Figure 4. It can be seen
that all lines cross the vertical axis for ν = ε and their slopes become smaller as
m increases. Notice that the dotted horizontal line is the partition line in the
case of fixed time delay. This implies that the stable region becomes smaller as
the value of m increases and converges to the region defined with the fixed time
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delay when m tends to infinity.

Figure 2. Partition lines

3 Conclusions
This paper examines the dynamic delayed Goodwin’s business cycle model. Suf-
ficient and necessary stability condition was derived first in the case of fixed
lags. The stability conditions and the stability regions depend on the type of
the weighting function in the case of continuously distributed time lags. These
stability region shrinks as the variance of the delay decreases, and it converges
to the stability region of fixed delays as the variance converges to zero. In the
case of continuously distributed time lags, we also showed that in the case of
stability loss, Hopf bifurcation occurs giving the possibility of the birth of limit
cycles around the stationary state.
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