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Abstract

Dynamics of Goodwin�s accelerator business cycle model is reconsid-
ered. The model is characterized by a nonlinear accelerator and an invest-
ment time delay. The role of the nonlinearity for the birth of persistent
oscillations is fully discussed in the existing literature. On the other hand,
not much of the role of the delay has yet been revealed. The purpose of
this paper is to show that the delay really matters. In particular, two main
results are obtained. In the original framework of Goodwin (1951), it is
�rst demonstrated that limit cycles arise for smaller values of the delay
and so do sawtooth oscillations for larger values and that the threshold
value between these cases has initial point dependency. In the extended
framework in which a consumption delay, in addition to the investment
delay, is introduced, it is then demonstrated that there is an interval of
delay in which the limit cycle coexists with the sawtooth oscillation. The
possibility of the coexistence has an initial-point dependency.
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1 Introduction

This paper reconsiders dynamics of Goodwin�s accelerator business cycle model
(Goodwin, 1951). The model has two distinct features: one is a nonlinear accel-
erator and the other is an investment delay between the decision to investment
and the corresponding outlay. In demonstrating emergence of persistently cyclic
behavior in it, the roles of strong non-linearities are highlighted, however, the
roles of the delays are made implicit. This is mainly because, as will be seen
soon, a delay di¤erential equation that describes behavior of the national income
in Goodwin�s model is approximated in a neighborhood of zero-delay to obtain
a second-order nonlinear di¤erential equation. The existence of the persistent
oscillations is shown in this approximated model. As a result, considerations on
delays lie outside the scope of the main discussions. In the existing literature
since then, attention has been focused on non-linearities of the model. In this
study, we pose the following question to shed light on the lost sight of Goodwin�s
model: Is the delay responsible for the birth of the cyclic oscillations? Although
the Goodwin model, in addition to the classical multiplier-accelerator models
(i.e., Samuelson (1930) and Hicks (1950 )), can be found in macro-dynamics
literature, there are only a limited number of works dealing with the delay and
this question.1

Goodwin (1951) presents �ve di¤erent versions of the nonlinear accelerator-
multiplier model with investment delay. The �rst version has the simplest form
assuming a piecewise linear function with three levels of investment and aims
to exhibit how non-linearities give rise to endogenous cycles without relying on
structurally unstable parameters, exogenous shocks, etc. The second version
replaces the piecewise linear investment function with a smooth nonlinear in-
vestment function. Although persistent cyclical oscillations are shown to exist,
the second version includes unfavorable phenomena, that is, discontinuous in-
vestment jumps, which are not observed in the real economic world. "In order
to come close to reality" (Goodwin, 1951, p.11), the third version introduces
an investment delay. However, no analytical considerations are given to this
version. The existence of a self-sustaining business cycle is con�rmed in the
fourth version, which is a linear approximation of the third version with respect
to the investment delay. Finally, alternation of autonomous expenditure over
time is taken into account in the �fth version, which becomes a forced oscillation
system.
This paper reconstructs the third version and applies the recently developing

mathematical results on the �xed delay di¤erential equations to its analysis of
cyclic dynamic behavior. It is a complement of Matsumoto and Suzuki (2008)
and Matsumoto (2009) in which the dynamics of Goodwin�s model is examined
under the continuously distributed time delays and the existence of the multiple
limit cycles are analytically and numerically shown. Our main concern in this
paper is on the role of the �xed delay for macro dynamics and our main result is
that the delay really matters. In particular, the delay not only a¤ects convergent

1Gandolfo (1997) gives a short description that an gestation lag of investment in Kalecki
(1935) can be a source of the existence of a business cycle.
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dynamics when the steady state is locally stable but also plays a crucial role for
persistent oscillations when the system is locally unstable.
The paper is organized as follows. In Section 2, the basic elements of Good-

win�s model are recapitulated. In Section 3, the notable features of the delay
are explicitly considered. This section is divided into two parts. In its �rst part,
e¤ects of investment delays are examined and in the second part, consumption
delays are introduced to extend Goodwin�s model. Section 4 contains some
concluding remarks.

2 Basic Model

To �nd out how nonlinearity works to generate endogenous cycles, we review
the second version of Goodwin�s model, which we call the basic model,8<: " _y(t) = _k(t)� (1� �)y(t);

_k(t) = '( _y(t)):

(1)

Here k is the capital stock, y the national income, � the marginal propensity
to consume, which is positive and less than unity, and the reciprocal of " is a
positive adjustment coe¢ cient. The dot over variables stands for time di¤eren-
tiation. The �rst equation of (1) de�nes an adjustment process of the national
income. Accordingly, national income rises or falls if investment is larger or
smaller than savings. The second equation, in which '( _y(t)) denotes the in-
duced investment, describes an accumulation process of capital stock based on
the acceleration principle. According to this principle, investment depends on
the rate of changes in the national income. A distinctive feature of Goodwin�
model is to introduce a nonlinearity into the investment function in such a way
that the investment is proportional to the change in the national income in the
neighborhood of the equilibrium income but becomes in�exible (i.e., less elastic)
for extremely larger or smaller values of the income. This nonlinear accelera-
tion principle is crucial in obtaining endogenous cycles in Goodwin�s model. We
will retain this nonlinearity assumption. On the other hand, we depart from
Goodwin�s non-essential assumption of positive autonomous expenditure and
will work with zero autonomous expenditure for the sake of simplicity. A direct
consequence of this alternation is that a stationary point of the basic model is
y(t) = _y(t) = 0 for all t:
Inserting the second equation of (1) into the �rst one and moving the terms

on the right hand side to the left give the single dynamic equation for the
national income y,

" _y(t)� '( _y(t)) + (1� �)y(t) = 0: (2)

This is a nonlinear di¤erential equation. Although (2) is one-dimensional, its
nonlinearity due to the acceleration principle prevents deriving an explicit form
of the solution. It is, however, possible to detect local dynamics by examining its
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linearized version in a neighborhood of the stationary point and global dynamics
by numerical simulations. This is the approach we take in this study.
The linear version of equation (2) is

" _y(t)� � _y(t) + (1� �)y(t) = 0; (3)

where � = '0(0) is the slope of the investment function at the stationary point.
This is a �rst-order ordinary di¤erential equation. If � = "; then y(t) = 0 for
all t � 0; so we may assume that � 6= ". Applying separation of variables gives
the complete solution,

y(t) = y0e
�t with � =

1� �
� � " ; (4)

where y0 is an initial condition. � is a real root and no oscillation occurs.
The stationary point is locally asymptotically stable or unstable according to
whether the eigenvalue � is negative or positive. Since 1 � � is the positive
marginal propensity to save, the sign of the eigenvalue depends on whether
the numerator is positive or negative. Roughly speaking, a smaller adjustment
coe¢ cient (i.e., a larger ") is responsible for local stability while a larger response
of the investment accelerator is a local destabilizer. We summarize this result
on the basic model:

Theorem 1 The zero solution of the basic model (2) is locally asymptotically
stable if � < " and locally unstable if � > ":

It is easy to see that if � < "; then any time trajectory of equation (2) even-
tually converges to the zero solution as t �! 1; although it exhibits di¤erent
transient oscillations according to the di¤erent selections of the initial point.
We turn our attention to global dynamics in the case of local instability (i.e.,
� > "). In order to conduct numerical analysis, we �rst specify the investment
function as well as the values of the coe¢ cients of the basic model and then
perform simulations to see what dynamics of y can be generated. Although
Goodwin (1951) assumed the piecewise linear investment function, we, for the
sake of analytical convenience, adopt a smooth nonlinear investment function
of the form of an arctangent,

'( _y(t)) = �
�
tan�1( _y(t)� �)� tan�1(��)

	
, � > 0 and � > 0: (5)

This function has endogenous "ceiling" and "�oor" and is asymmetric when the
parameter, �, is non-zero. In what follows, since the same set of the parameter
values will be repeatedly used, we make the following assumption for conve-
nience. Needless to say, these particular values of the parameters are selected
only for analytical simplicity and do not a¤ect qualitatively the results to be
obtained.

Assumption 1 � = 0:8; " = 0:5; � = 1:5 and � = 1
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Notice that the investment function (5) under Assumption 1 passes through
the origin with the slope '0(0) = � = 0:75 and its ceiling is three time higher
than its �oor as it was the case in Goodwin�s model. An alternative expression
of dynamic equation (2) is

y(t) =
'( _y(t))� " _y(t)

1� � ; (6)

which describes a mirror-imaged N -shaped curve in the ( _y; y) plane when equa-
tion (5) is substituted into (6). Di¤erentiating (6) with respect to _y(t) and
equating the resultant derivative to zero, we can obtain the maximizer ( _yM )
and the minimizer ( _ym),

_yM = � +

p
(� � ")"
"

and _ym = � �
p
(� � ")"
"

:

These then determine the local maximum (yM ) and minimum (ym) of y via
equation (6).2 The phase diagram is presented in Figures 1(A) in which a birth
of an endogenous cycle is illustrated under Assumption 1 when the initial point
is taken at y0 = 2. Along the locus, the initial point is displaced slightly upward
to point A = ( _yM ; yM ) so that the output is increasing to the highest level of
the national income, yM . Investment immediately switches discontinuously from
positive to negative. Graphically, the orbit jumps from point A to point B:With
negative _y(t) at point B; the national income gradually declines from point B to
point C = ( _ym; ym) so that the output is decreasing to the lowest level, ym. Once
point C is reached, investment switches again discontinuously from negative to
positive. That is, the orbit jumps again from point C to point D from which the
national income glides toward point A; and then the process repeats itself. Thus
the di¤erential equation (2) with the nonlinear investment function (5) can give
rise to a closed orbit constituting a self-sustaining slow-rapid (or relaxation)
oscillation. Notice that regardless of the initial point, a trajectory can converge
to the same slow-rapid oscillation. Since _y(t) discontinuously jumps at the
points A and C, it makes the sharp kinks at the highest and lowest levels of
the corresponding time trajectory y(t) as shown in Figure 1(B). We call it a
sawtooth oscillation.3 This is a simple exhibition of emerging an endogenous
cycle of output. We summarize the global results obtained in the basic model:

Theorem 2 The zero solution of the basic model (2) is globally asymptotically
stable if � < " whereas a slow-rapid cycle emerges, and the corresponding time
trajectory displays sawtooth oscillations if v > ":

2Explicit forms of yM and ym are not given only because they are long and clumsy.
3The implicit function theorem states that _y(t) is a continuous function of y(t) if '0( _y(t)) 6=

0: Solving equation '0( _y(t)) = 0 leads to two solutions for _y(t); _yA(t) at point A and _yC(t)
at point C, at each of which a jump of _y(t) occurs. At these points, the y(t) values are the
kinks, in other words, the continuity of _y(t) as function of y(t) (which is continuous in t) is
violated. So _y(t) is discontinuous in t there.
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(A) Slow-rapid cycle (B) Kinked trajectory

Figure 1. Birth of an endogenous oscillation

3 Fixed Delay Model

We investigate how the delay a¤ects time paths of national income. This sec-
tion is subdivided into two subsections. The investment delay of the Good-
win model is presented in the �rst subsection. We then introduce, in addition
to the investment delay, a delay in consumption, following the spirit of the
multiplier-accelerator models in which the delay in consumption is one of the
main ingredients.

3.1 Investment Delay

Observing the fact that, in real economy, plans and their realizations need time
to take e¤ects, Goodwin (1951) introduces the investment delay, �, between
decisions to invest and the corresponding outlays in order, �rst, to come closer
to reality and second, to eliminate unrealistic discontinuous jumps. Inserting �
into the investment function of the basic model yields the third version of his
model,

" _y(t)� '( _y(t� �)) + (1� �)y(t) = 0 (7)

with an initial function,

y(t) = f(t) for � � � t � 0:

This is a delayed di¤erential equation of neutral type, which we call the delay
model. The initial function gives behavior of y prior to time zero. For simplic-
ity, we assume a constant initial function f(t) = y0 and call y0 an initial point.
Goodwin (1951) does not analyze dynamics generated by this model. Further-
more, to the best of our knowledge, no analytical solutions of equation (7) are
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available yet. Since a cyclic oscillation has been shown to exist in the basic
model, our main concern here is to see how the presence of the investment delay
a¤ects characteristics of such a slow-rapid cycle. We analytically investigate the
local stability of the cycle generated in the linearized model and numerically
detect the e¤ects caused by the delay on cyclical dynamics.

3.1.1 Local Stability

The delay model is autonomous and its special solution is constant (i.e., y(t) =
0) so that its linearized version takes the form of a linear neutral autonomous
delay di¤erential equation,

" _y(t)� v _y(t� �) + (1� �)y(t) = 0: (8)

It is well known that if the characteristic polynomial of a linear neutral equation
has roots only with negative real parts, then the stationary point is locally
asymptotically stable. The normal procedure for solving this equation is to try
an exponential form of the solution. Substituting y(t) = y0e

�t into (8) and
rearranging terms, we obtain the corresponding characteristic equation:

"�� ��e��� + (1� �) = 0:

To check stability, we determine conditions under which all roots of this
characteristic equation lie in the left or right half of the complex plane. Dividing
both sides of the characteristic equation by " and introducing the new variables

a =
�

"
> 0 and b =

1� �
"

> 0; (9)

we rewrite the characteristic equation as

�� a�e��� + b = 0: (10)

Freedman and Kuang (1991) derive explicit conditions for stability/instability
of the n-th order linear scalar neutral delay di¤erential equation with a single
delay. Since (8) is a special case of the n-th order equation, applying their
result (i.e., Theorem 2.1) leads to the following: the real parts of the solutions
of equation (10) are positive for all � > 0 if a > 1. The �rst result on the �xed
delay model is summarized as follows:

Lemma 1 If � > "; then the zero solution of the �xed delay model (7) is locally
unstable for all � > 0:

On the other hand, if v � " or a � 1, characteristic equation (10) has at
most �nitely many eigenvalues with positive real parts. It is shown in equation
(4) that the eigenvalue is real and negative when � = 0: The roots of the
characteristic equation are functions of the delay. Although it is expected that
all roots have negative real parts for small values of �; the real parts of some
roots may change their signs to positive from negative as the lengths of the delay
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increases. The stability of the zero solution may change. Such phenomena
are often referred to as stability switches. We will next prove that stability
switchings, however, cannot take place in the delayed model.

Lemma 2 If � � "; then the zero solution of the �xed delay model (7) is locally
stable for all � > 0:

Proof. (i) We �rst deal with the case of v < ": It can be checked that � = 0 is
not a solution of (10) because substituting � = 0 yields b = 0 that contradicts
b > 0: If the stability switches at � = ��, then (10) must have a pair of pure
conjugate imaginary roots with � = ��: Thus to �nd the critical value of ��; we
assume that � = i!; with ! > 0; is a root of (10) for � = �� > 0: Substituting
� = i! into (10), we have

b� a! sin!� = 0;
and

! � a! cos!� = 0:
Moving b and ! to the right hand sides and adding the squares of the resultant
equations, we obtain

b2 + (1� a2)!2 = 0:
Since b > 0 and 1� a2 > 0 as a < 1 is assumed, there is no ! that satis�es the
last equation. In other words, there are no roots of (10) crossing the imaginary
axis when � increases. No stability switch occurs and thus the zero solution is
locally asymptotically stable for any � > 0.
(ii) In case of " = � in which a = 1, the characteristic equation becomes

�(1� e���) + b = 0: (11)

It is clear that � = 0 is not a solution of (11) since b > 0. Thus we can assume
that a root of (11) has non-negative real part, � = u + iv with u � 0 for some
� > 0: From (11), we have

(u+ b)2 + v2 = e�2u�(u2 + v2) � (u2 + v2);

where the last inequality is due to e�2u� � 1 for u � 0 and � > 0: Hence

2ub+ b2 � 0;

where the direction of inequality contradicts the assumption that u � 0 and
b > 0. Hence it is impossible for the characteristic equation to have roots with
nonnegative real parts. Accordingly, all roots of (11) must have negative real
parts for all � > 0:

Lemmas 1 and 2 imply the following theorem concerning local stability of
the delay model (7).

Theorem 3 For any � > 0; the zero solution of the delay model (7) is locally
asymptotically stable if � � " and unstable if � > ":
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3.1.2 Global Stability

Theorems 1 and 3 show that the delay model and the basic model have the same
stability condition except the critical case of � = ". Introducing �xed time delay
does not a¤ect the local stability condition of the basic model. However this
does not necessarily mean that the delay has no e¤ects on global behavior. To
see the delay e¤ect, we conduct numerical simulations.
We start with the locally stable case under Assumption 1 but with changing

the value of " to 0:85 to hold the stability condition � < ": Figure 2(A) illustrates
three simulation results of the global behavior for 0 < t < 50 when the same
initial point y0 = 0:1 is taken and the lengths of the delay are di¤erent. The red
trajectory has no delay, � = 0, the blue has � = 3 and the green has � = 6. At
least the following three issues can be observed, implying that the delay matters
in the stable case:

(i) The delay generates oscillations as the blue and green trajectories exhibit
dampening oscillations while the red trajectory monotonically converges
to the zero solution.

(ii) The delay causes slow convergence to the zero solution since the blue and
green trajectories take more time to arrive at the zero solution than the
red trajectory, which rapidly converges.

(iii) The delay makes time trajectories kinked, implying discontinuous jumps
of _y(t).

Increasing the value of y0 does not change the qualitative features of the
transient dynamics just described above as far as y0 is positve. However, dy-
namics drastically is changed if the inital value is taken to be negative. In the
next two simulations, the initial point is changed but the length of the delay is
kept to be constant at � = 2: In Figure 2(B), the red trajectory starts at y0 = 2
and shows oscillatory convergence to the zero solution as in Figure 2(A) and the
blue trajectory starting at y0 = �2 �nally converges to sawtooth oscillations.
Since the parameter values are not changed, these simulations exhibit a coexis-
tence of persistent oscillations and convergent trajectory due to di¤erent choices
of the initial points. Further, careful observations reveal that these trajectories
are also kinked many times. In short, we have the following.

(iv) The delay generates initial point dependency that leads to the coexistence
of qualitatively di¤erent dynamics.

In both simulations, introducing delay into the basic model does not get rid
of kinked oscillations. These numerical results are summarized:

Proposition 1 If � < "; then a positive delay can be a source of oscillations
but unable to eliminate kinked oscillations including sawtooth oscillations while
di¤erent initial functions can lead to qualitative di¤erent dynamics although the
zero solution is locally stable.
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(A) Di¤erent delays (B) Di¤erent initial points

Figure 2. Delay e¤ects on stable trajectories

To con�rm the initial point dependency, we further simulate the delay model.
Given �; Figure 3(A) describes how the dynamics changes as the initial point
changes. Indeed, with � = 2; the initial point y0 is increased from �7 to
�0:1with increment of 0:01. There are two critical values, yL0 ' �5:7578 and
yH0 ' �1:0169;4 and the time trajectory converges to the zero solution if y0 < yL0
or y0 > yH0 : On the other hand, it converges to the sawtooth oscillations if
yL0 < y0 < y

H
0 : The maximum and minimum values of the oscillations are pre-

sented by the upper and lower mound-shape curves. It is seen that amplitude of
the oscillations gradually increases, arrives at the maximum and then decreases
to zero as y0 increases to yH0 from yL0 . Figure 3(B) illustrates the sensitivity of
these critical values to a change of the length of delay. We take eight di¤erent
values of �, 0:1; 0:3; 0:5; 1; 1:5; 2; 2:5 and 3: The corresponding values of yL0
and yH0 are denoted by the red dots. Connecting the values of yL0 or y

H
0 is given

by the �atter sloping curve or the steeper sloping curve. Within the interval
[yL0 ; y

H
0 ]; sawtooth oscillations emerge. The length of the interval is expressed

by the dotted line between yL0 and y
H
0 : It can be seen that the interval becomes

4These values are numerically obtained.
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longer as the value of � increases.5

(A) Dependency on y0 (B) Interval [yL0 ; y
H
0 ]

Figure 3. Delay e¤ects on stable trajectories

We now draw attention to the global dynamics under the local unstable
conditions. Goodwin (1951) expands the delay model (7) with respect to � to
obtain his fourth version, given as a second-order nonlinear ordinary di¤erential
equation,

"��y(t) + ["+ (1� �)�] _y(t)� '( _y(t)) + (1� �)y(t) = 0: (12)

This is an equation of the Rayleigh type. It is already shown that this equa-
tion has a unique periodic solution without any jumps in the locally instable
case when � > " + (1 � �)�:6 We call such a smooth oscillation a Goodwinian
cycle or oscillation hereafter.7 Since this approximated version is valid only
for smaller values of �; it is natural and interesting to address a question on
whether a Goodwinian cycle might emerge for larger values of �: To answer this
question, we numerically simulate the delay model when the zero solution is
locally unstable (i.e., � > "). Figure 4 represents the bifurcation diagrams of
y(t) with respect to the delay parameter �: For given value of �; the solutions of
(7) for 0 < t < 1000 are calculated and the local maximum and minimum values
of y(t) for 950 < t < 1000 are plotted against �: The bifurcation parameter �
increases from 0 to 3 with increment of 0:01 and for each value of �; the same cal-
culating procedure is repeated to obtain the bifurcation diagram. Figure 4(A)
implies that Goodwinian oscillations of y(t) are possible not only for smaller
values of � but also for larger values. More precisely, under Assumption 1 and

5For � = 0:1; yH0 ' �0:2173 and yL0 ' �0:2567 so that their di¤erence, yH0 � yL0 ' 0:04; is
almost invisible. Although two points seem to stick together in Figure 3(B), they are distinct.

6See Sasakura (1996).
7This is called the �rst mode of oscillation while the sawtooth oscillations the higher modes

of oscillations in Strotz et al. (1953).
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y0 = 15, there is a threshold value �� ' 1:6723:8 A Goodwinian cycle having one
maximum and one minimum emerges for � < �� and its diameter measured by
the distance between these extremum values changes as � increases. The smooth
oscillations suddenly disappear when � arrives at �� and a sawtooth oscillation
appears for � > �� as shown in Figure 4(B) which is an enlargement of Figure
4(A) in the neighborhood of ��:9

(A) 0 � � � 3 (B) 1:65 � � � 1:70

Figure 4. Bifurcation diagrams with respect to �

Taking � < ��; we will �rst compare the Goodwinian cycle arisen in the delay
model with one in the approximated model and then turn to examine dynamics
for � > ��. Two phase planes are presented in Figure 5 in which the national
income is on the vertical axis, its derivative on the horizontal axis and the origin
denotes the singular point with y(t) = _y(t) = 0 for all t � 0. The blue phase
trajectory forms the closed loop generated by the delay model and the green
one by the approximated model while the red curve by equation (6), the basic
model. As a smaller delay, � = 0:1 is assumed in Figure 5(A), the blue and
green cycles are almost the same. Further it can be seen that these cycles have
no jumps and are located on the negative- and positive-sloping parts of the red
curve. These facts indicate the followings:

(i) introducing the delay works to eliminate unfavorable jumps observed in the
basic model;

(ii) the nonlinear di¤erential equation well approximates the delay di¤erential
equation when � is small;

(iii) the cycles are stable and have no initial point dependency.

8This value is numerically obtained by rule of thumb and is sensitive to the selected value
of the initial point. See Figure 7(A).

9Antonova et al. (2013) rigorously investigates the properties of the sawtooth oscillations.
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These are the issues which Goodwin (1951) emphasizes. In Figure 5(B) a
larger delay is taken, � = 1; and it is observed that the delay model generates
a Goodwinian cycle. It is also observed that although the approximated model
still gives rise to an oscillatory movement, the resultant green cycle shows large
di¤erences from the blue cycle. This dissimilarity implies that the nonlinear
di¤erential equation (12) does not approximate the delay di¤erential equation
(7) anymore.

(A) � = 0:1 (B) � = 1

Figure 5. Delay Goodwinian and approximated oscillations

For much larger delay � > ��; the delay model does not generate a Good-
winian cycle but exhibits sawtooth oscillations as the basic model (2). Given
y0 = 15; the delay model (7) with di¤erent delays, �1 = 1:71 and �2 = 2:1 gen-
erates two di¤erent slow-rapid cycles, the blue cycle denoted by points abcdefgh
and the black cycle by points ABCD as shown in Figure 6(A). Both take
parallelogram-wise shaped forms and jump at points a; c; d and g or at A and C:
These are the solutions of the delay model (2) with the same parameter values
and indicate that there are more additional cycles corresponding to the di¤erent
initial points.10 Accordingly, its corresponding time trajectories have kinks as
shown in Figure 6(B). The slow parts of the slow-rapid cycle are located exactly
on the mirror-imaged N -shaped red curve described by the basic delay (2).11

The blue cycle has period t1e � t1s = �1 and amplitude y1M � y1m ' 1:87 and the
black cycle has period t2e � t2s = �2 and amplitude y2M � y2m ' 3:94. Notice that
the minimum values y1m or y2m of the trajectory are positive and thus greater
than the zero solution. The trajectories oscillate around some positive levels
of output. On the other hand, the kinked trajectory in Figure 1(B) oscillates
around the equilibrium level of national income. In all, contrary to Goodwin�s

10Strotz et al. (1953) describe "... we found...at least twenty-�ve other limit cycles." (p.398)
11This has been already pointed out by Antonova et al. (2010). Furthermore, it is analyti-

cally shown by Antonova et al. (2013) that the sawtooth oscillations obtained with a positive
delay satisfy the basic model (2) without delay.
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intention, the delay model with a large value of � fails to eliminate discontinuous
jumps.

(A) Slow-rapid cycles (B) Kinked trajectories

Figure 6. Sawtooth oscillations with � = 2

The critical value �� is numerically con�rmed to have initial point dependency.
Figures 7(A) and 7(B) depict the locus of negative y0 denoted as ym0 and ��
and the locus of positive y0 denoted as yM0 and �� on which the Goodwinian
cycle of the delay model just disappears. The critical values �� is obtained
for y0 = �0:1; �0:5 and integers from �1 to �15. These 17 combinations are
depicted as the red dots and the boundary curves are constructed by connecting
these dots. Hence a Goodwinian cycle emerges for (y0; �) in the yellow region and
a sawtooth oscillation is born in the white region. Notice further the followings:

(i) dynamics is almost symmetric with respect to y0 = 0;

(ii) Goodwinian oscillations emerge for y0 < ym0 or y > yM0 ;

(iii) the interval [ym0 ; 0) [ (0; yM0 ] becomes longer as � increases.

Figures 8(A) and 8(B) describe dependency of the resultant oscillations on y0
that change from�0:01 to�3 along the dotted horizontal line at � = 1 in Figures
7(A) and 7(B). The horizontal line crosses the loci of (y0; �) approximately at
y0 = �2 (more precisely, ym0 ' �2:05 and yM0 ' 1:98). It is seen that the
Goodwinian cycle has a constant diameter whereas the maximum and minimum
values of the sawtooth oscillation are sensitive to the value of y0: It is also seen
that the threshold value �� seems to have an upper bound above which only the
sawtooth oscillations appear regardless of the initial point.12

12The changes of �� for a unit increase of y0 from 12 to 15 are 25=10000, 12=10000 and
6=10000. On the other hand, the changes �� for a unit decrease of y0 from �12 to �15 are
28=10000, 23=10000 and 21=10000. The marginal changes are decreasing.
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Proposition 2 If � > "; then the delay model gives rise to a Goodwinian cycle
if � < �� and a sawtooth oscillation if � > �� where the critical value �� positively
depends on the initial point y0:

(A) Locus of ym0 and �� (B) Locus of yM0 and ��

Fgure 7. Boundary curves between Goodwinian and sawtooth ocillations

(A) Dependency of y0 < 0 (B) Dependency on y0 > 0

Figure 8. Initial point dependency of two oscillations wth � = 1

3.2 Consumption Delay

Goodwin (1951) introduces the investment delay in order to "come closer to
reality" in which discontinuous jumps are not observed. Although he did not
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examine the delay model, our numerical results indicate that his attempt is
half-success and half-failure because smooth oscillations without jumps are ob-
tained for � < �� and sawtooth oscillations are still obtained for � > ��: In order
to improve Goodwin�s delay model (7), we introduce, in addition to the invest-
ment delay, a consumption delay with two reasons. First, as seen in the classical
multiplier-acclerator models like Samuelson (1939) and Hicks (1950), it is nat-
ural to assume that current consumption is determined by the income in the
past periods. Second, according to Sordi and Vercelli (2006), Goodwin (1946)
takes into account a �xed delay between consumption expenditure and income
generation to construct an earlier version of Goodwin business cycle model.
However, for only analytical simplicity, in this study, we deal with the special
case where the consumption delay denoted as � is identical with the investment
delay, � = �:13 Equation (7) is now modi�ed to

" _y(t)� '( _y(t� �)) + (1� �)y(t� �) = 0: (13)

3.2.1 Local Stability

The linear version of equation (13) is

" _y(t)� � _y(t� �) + (1� �)y(t� �) = 0:

or
_y(t)� a _y(t� �) + by(t� �) = 0

where a and b are already de�ned in (9). The corresponding characteristic
equation is

�� a�e��� + be��� = 0: (14)

Due to Freedman and Kuang (1991, Theorem 1.2) again, we have the following:

Lemma 3 If � > ", then the zero solution of equation (13) is locally unstable
for all � > 0:

In the following discussions we assume � < " or a < 1 for a while. It is easily
checked that � = 0 is not a solution of equation (14) as b > 0. Hence if stability
of the zero solution of equation (13) switches at � = ~�; then equation (14)
must have a pair of pure conjugate imaginary roots. In order to check stability
switches, we now suppose that � = i! with ! > 0 is a root of equation (14) for
� = ~� � 0:
Substituting this root into the characteristic equation (14) and separating

the real and imaginary parts give

�a! sin!� + b cos!� = 0

a! cos!� + b sin!� = !:
(15)

13A general case of � 6= �; � > 0, � > 0 and a special case of � = 0, � > 0 are fully considered
in Matsumoto and Szidarovszky (2014).
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Squaring both equations and adding them together, we obtain

a2!2 + b2 = !2:

Hence

!2 =
b2

1� a2 > 0

which implies that purely imaginary roots of equation (14) exist,

! =
bp
1� a2

> 0:

From (15), we have

sin!� =
b!

a2!2 + b2
> 0 (16)

and

cos!� =
a!2

a2!2 + b2
> 0: (17)

Hence the inequalities imply that there is a unique !�; 0 < !� < �=2 for which
both equations (16) and (17) hold. Solving these equations for � yields

� =
1

!

�
sin�1

�
b!

a2!2 + b2

�
+ 2n�

�

=

p
"2 � �2
1� �

"
sin�1

 p
"2 � �2
"

!
+ 2n�

# (18)

or

� =
1

!

�
cos�1

�
a!2

a2!2 + b2

�
+ 2n�

�

=

p
"2 � �2
1� �

h
cos�1

��
"

�
+ 2n�

i (19)

Notice that equations (18) and (19) have di¤erent forms giving the same value
of � for which the stability switch takes place.
We determine the sign of the real part of the derivative of � at the stability

switches. Since � is �-dependent, di¤erentiating (14) with respect to � yields�
1� (b� + a(1� ��))e���

	 d�
d�
� �(b� a�)e��� = 0:

Solving this, only for convenience, for (d�=d�)�1; we have�
d�

d�

��1
=
e�� � (b� + a(1� ��))

�(b� a�) :

Notice that from (14),

e�� =
a�� b
�

;
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therefore, for � = i!;

Re

"�
d�

d�

��1#
=

b2

!2 ((a!)2 + b2)
> 0:

This inequality implies that the only crossing with the imaginary axis is from
left to right as � increases. That is, stability is lost at the smallest stability
switch and it cannot be regained later. As seen in the left part of Figure 9, the
locus described by equation (18) or (19) divides the �rst quadrant of the (�; �)
plane into two regions. The zero solution is locally stable under a positive delay
in the region below this locus and locally unstable in the region above. In other
words, a stability switch occurs on this locus which we call the partition curve.

Lemma 4 If � < "; then stability of the zero solution of (13) is switched to
instability at � = �s where

�s =

p
"2 � �2
1� � cos�1

��
"

�

Figure 8. Partition curve and stability region

Lemmas 3 and 4 together imply the local stability condition of the zero
solution of the delay model (13) as follows:

Theorem 4 The zero solution of the delay model (13) is locally unstable if � > "
while it is locally asymptotically stable for (�; �) in the yellow region below the
partition curve and loses stability on the curve.

3.2.2 Global Stability

We examine the delay e¤ects on global stability and start with the case where
the zero solution is locally stable. We address the following questions: does
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it destabilize the locally stable zero solution and if so, then what kind of global
dynamics the delay model (13) can have.
Taking �1 = 0:25 with other parameter values speci�ed in Assumption 1

that yields a < 1; we increase the value of � along the vertical dotted line at
� = �1 in Figure 8. The threshold value �1 = 5

p
3�=12(' 2:267) is the point

at which the vertical dotted line crosses the partition curve. To see how the
delay a¤ects global dynamics, we obtain bifurcation diagrams with respect to
� with three di¤erent initial points y0, in the same way as shown in Figure 3.
To highlight the dissimilarities among these diagrams, we restrict the domain of
� to a very small interval, [�m; �M ] with �m = �1� 0:145 and �M = �1+0:105:
The numerical results with three di¤erent initial points are presented in Figure
10(A) where the red curve is obtained with y0 = 0:1; the blue with y0 = 1:5
and the green with y0 = 5: The green curve is plotted �rst, the blue one is then
put on it and �nally the red is over these two diagrams. The green curve seems
to jump at � = �0 ' 2:18 and so does the blue curve for � = ~� ' 2:23.14 The
followings are observed:

(i) For � < �0; all the three curves are identical with the horizontal axis im-
plying that all converge irrespective of the initial values;

(ii) For �0 � � < ~�, the red and blue curves are still on the horizontal axis but
the green curve bifurcates to two upper and lower branches, implying that
a limit cycle emerges;

(iii) For ~� < � � �1; the red curve is still on the horizontal axis while the blue
curve bifurcates to two branches which are exactly on the green branches;

(iv) For � > �1; the red curve bifurcates to two branches implying that all the
three curves are identical again irrespective of the initial values.

The critical value ~� depends on the initial value of y0: This dependency is
described by the negative-sloping curve in Figure 10(B). The nine dotted points
in red are numerically obtained and the curve is constructed by connecting these
points. It is seen that ~�(y0) gets closer to �0 as y0 increases and to �1 as y0
decreases to zero.15

Proposition 3 If � � " and the initial function takes an initial point close to
0 at t � 0; then the zero solution is locally stable for � < ~�; its stability is lost
at � = ~� and then it bifurcates to a limit cycle with increasing amplitude as �
increases further.

14 It seems that the zero point jumps to a limit cycle just after it loses stability at � = �0 or
� = ~�. However, it does not jump but bifurcates to the cycle via the supercritical bifurcation
in the very small (almost invisible) parameter interval of �.
15 It it also obtained that ~�(y0) ' 2:2664 for y0 = 0:05 and ~�(y0) ' 2:2668 for y0 = 0:01:
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(A) Bifurcation diagrams (B) Dependency of ~�

Figure 10. Goodwinian cycle for � < "

In the second simulation we increase the value of � to �2 = 0:75 and deal
with the unstable case. Two di¤erent initial functions are selected and accord-
ingly, two bifurcation diagrams are illustrated in Figure 11(A) in which the zero
solution is locally unstable and no stability switch occurs. The diagram colored
in blue has the initial point y0 = 0:1 and the red one has y0 = 1:1. The former is
located on the latter. Notice that the two diagrams are di¤erent in the interval
[�L; �H ] and identical otherwise. The extreme values of the interval have initial
point dependency and the dependency is numerically con�rmed in Figure 11(B)
where the red curve is a locus of �L(y0), the blue curve is a locus of �H(y0) and
the vertical dotted line stands at �y0 ' 0:1714:16 In Figure 11(A), since y0 = 0:1
is assumed, the extreme values are calculated as �L ' 1:554 and �H ' 2:254.
From the numerical results that are conducted under � = 0:8; " = 0:5; � = 0:75;
we have the following three issues:

(i) A Goodwinian oscillation (i.e., red curve) coexists with a sawtooth oscilla-
tion (i.e., blue curve) for � in the interval [�L; �H ] if y0 � �y0;

(ii) For � < �L or � > �H ; the two diagrams are identical, implying that only
the Goodwinian cycle emerges.

(iii) Only Goodwinian cycle emerges if y0 > �y0.

Proposition 4 If � > ", then the delay model (13) generates a Goodwinian
cycle unless the initial point is in a neighborhood of the locally unstable zero
solution.
16This value could depend on the speci�cation of the model�s parameters.
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(A) Bifurcation diagrams (B) Interval [�L(y0); �H(y0)]

Figure 11. Goodwinian cycle for � > "

4 Concluding Remarks

We have reconsidered the dynamics of Goodwin�s multiplier-accelerator model
with �xed delays. As a benchmark, the basic model that has no delays is
investigated. It is shown that its steady state is locally and globally stable when
the product of the marginal propensity to invest and the adjustment coe¢ cient
of the national income dynamic process is less than unity. It is also shown that
a stable rapid-slow cycle with discontinuous jumps emerges when it is locally
unstable. Following the spirit of Goodwin, we introduce the investment delay
and obtain the following results. It is �rst con�rmed that the local stability
condition of the basic model still holds in the delay model. This means that the
delay has no e¤ects on the local behavior. However the delay de�nitely a¤ects
the global behavior. Second, the delay prolongs the convergence of the stable
time trajectories and makes trajectories kinked. There is a threshold value
of the delay, and the time trajectories are smooth (i.e., no sudden changes)
for the delay less than this value and kinked for larger delay. Furthermore, the
threshold value has an initial point dependency. Following the spirit of Hicks, we
add the consumption delay and �nd that the time trajectory has an initial point
dependency and the stable limit cycle can coexist with the convergent stable
point when the steady state is locally stable. In the case of locally unstable
steady state, the smooth trajectory can coexist with the sawtooth oscillations
for relatively small values of the delay and only the smooth trajectory emerges
for larger values.
From the numerical point of view, we can demonstrate that the delay matters

in the motion of macroeconomic variables like the national income. However,
from the analytical point of view, we still have some open questions. In particu-
lar, it is unclear why the sudden change of oscillations from the smooth motion
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to zigzag motion occurs when the investment delay is involved. It is also unclear
why is there an interval in which the smooth and sawtooth oscillations coexist
when investment and consumption delays are present. These are what we will
address in a future study.
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