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Abstract

This study extends the New Keynesian model to examine the impact of

delays in monetary policy implementation on economic stability. The extant

literature indicates that if a central bank delays its response to the inflation

rate, this policy lag may increase the number of positive roots in the model

economy, implying that a time lag associated with inflation-targeting policy

causes instability or eliminates indeterminacy. However, cases where a central

bank considers multiple target variables but only one of them has a lag have

not yet been examined. We analyze the case in which the inflation rate and

output are the target variables of policy intervention, wherein a delay occurs

in the central bank’s response to output. We demonstrate that a policy lag

may increase the number of negative roots in the dynamic system, implying

that instability rather than indeterminacy may be eliminated by a policy lag.
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1 Introduction

A policy proposition derived from the standard New Keynesian (NK) model—an

optimization model that considers price stickiness—explains that active inflation-

targeting policy establishes local equilibrium determinacy. Here, active refers to

the policy attitude wherein the central bank changes the nominal interest rate by

more than a one-for-one in response to a one-unit change in the inflation rate. In

contrast, passive refers to a policy attitude with which the interest rate’s response is

less than one-for-one. This proposition is called the “Taylor principle,” named after

the economist who performed pioneering research on the Federal Reserve Bank’s

policy from demonstrative and normative viewpoints.

In general, two-dimensional NK models include two non-predetermined variables

(inflation rate and output). Accordingly, two roots with positive real parts are

required to achieve equilibrium determinacy. If there are fewer than two roots with

a positive real part, the equilibrium is indeterminate.

If the central bank implements a policy that considers not only changes in the

inflation rate but also changes in output (inflation–output targeting), equilibrium

determinacy can be achieved even if the policy is passive against inflation rate fluc-

tuations (Bullard and Mitra 2002). Thus, the implementation of output targeting

increases the possibility of determinacy.

Benhabib et al. (2003) examine the effect of a delay in monetary policy responses

on equilibrium determinacy. Their model assumes that the nominal interest rate

responds to the weighted average of previous inflation rates. In mathematical terms,

this denotes distributed lag. Benhabib et al. (2003) prove the existence of a limit

cycle, indicating that global indeterminacy of equilibrium can occur under such

policies. In contrast, Tsuzuki (2014, 2015) assumes that the nominal interest rate

responds to the inflation rate observed at a certain point in the past, denoting a fixed

lag.1 Models with a fixed lag are expressed as delay differential equation systems

(differential-difference equation systems), whereas models with distributed lag are

expressed as ordinary differential equation systems. In delay differential equation

systems, the characteristic equations have an infinite number of roots in the complex

plane. Therefore, equilibrium can become locally unstable; that is, if the number of

1Guerrini and Sodini (2013) propose a simple neoclassical growth model (Solow model) that

considers a capital accumulation lag of this type.
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roots with positive real parts is greater than two, the equilibrium is unstable.

Tsuzuki (2014) shows that if a fixed lag exists in the implementation of inflation

targeting, the economy may become locally unstable, even if the interest rate has a

sufficiently large response to the inflation rate. Additionally, Tsuzuki (2015) shows

that policy lag could eliminate equilibrium indeterminacy by increasing the number

of roots with positive real parts.

Thus, the studies on economic stability using NK models have shown that a delay

in the central bank’s response to the inflation rate has the effect of destabilizing

the system or eliminating indeterminacy (essentially, it causes an increase in the

number of roots with positive real parts) when the target variable of the policy

intervention is only one and the number of time lag is also only one. However, cases

where there are multiple policy target variables (inflation rate and output), and the

number of fixed lags is only one, have not yet been examined. Tsuzuki (2016) and

Shinagawa and Tsuzuki (2019) present NK models in which there is a time lag in

the implementation of fiscal policy, but those studies also do not assume policy rules

with multiple target variables.

This study extends the NK model to include both inflation rate and output as

part of the monetary policy rule. We assume that a fixed lag is present in the

implementation of output targeting and demonstrate that stabilization may occur

because of an increase in the policy lag. As mentioned above, the previous literature

shows that a time lag associated with inflation-targeting policy causes instability

or eliminates indeterminacy (Tsuzuki 2014, 2015). However, our study shows that

roots with negative real parts may increase due to an increase in the lag, implying

that stability may be established by a policy lag, even if there is only one lag.

The remainder of this paper is organized as follows. In section 2, we construct

the dynamic system of the model, while in section 3 we briefly analyze the case in

which a policy lag is not present. Sections 4 and 5 present the stability analysis for

the case with a policy lag. Finally, section 6 concludes the study.

2 The model

We consider a continuous-time NK model that follows Benhabib et al. (2003)

and Tsuzuki (2014). The economy consists of household–firm units, final goods-

producing firms, and the central bank. The household–firm units are continuously

3



distributed in the interval [0, 1]. Each household–firm unit produces a differentiated

product and consumes the final goods. The final goods-producing firms produce the

final goods by aggregating the differentiated products produced by household–firm

units.

2.1 Final goods-producing firms

The final goods-producing firms aggregate differentiated products according to the

Dixit–Stiglitz-type production function as follows:

y =

[∫ 1

0

yαj dj

] 1
α

, (1)

where y is the amount of final good produced, yj is the input of the differentiated

product of type j ∈ [0, 1], and 0 < α < 1. The elasticity of substitution among the

differentiated products is represented by ϕ ≡ 1/(1− α) > 1.

To identify the final goods sector as a single representative firm, we assume that

the final goods market is perfectly competitive. Given the output y and price of

product j, which we denote pj, the representative firm minimizes the total cost—∫ 1

0
pjyjdj—to yield the demand function for product j as follows:

yj =

(
pj
p

)−ϕ

y, (2)

where p is the price index expressed as follows:

p =

[∫ 1

0

p1−ϕj dj

] 1
1−ϕ

. (3)

The inflation rate is given by v ≡ ṗ/p.

2.2 Household–firm units

Household–firm unit j obtains utility from consumption cj and real money holding

mj. Similarly, it receives disutility from labor supply ℓj and price revisions vj. We

express the instantaneous utility function of household–firm unit j as follows:

uj(cj(t),mj(t), ℓj(t), vj(t)) = ε log cj(t) + (1− ε) logmj(t)−
ℓj(t)

1+ψ

1 + ψ
− η

2
(vj(t)− v∗)2,
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where t ∈ [0,∞) denotes time, v∗ represents the steady-state value of the inflation

rate, and vj denotes the price change rate of product j expressed as:

vj ≡
ṗj
pj
. (4)

In addition, ψ > 0 is the elasticity of the marginal disutility of labor supply, η > 0

is the scale parameter of the price revision cost, and 0 < ε < 1. The existence of

the price revision cost means that the price becomes sticky. Hence, η can also be

interpreted as representing price stickiness.

Assuming that household–firm units are infinitely lived, we can express the life-

time utility of household–firm unit j as follows:

Uj(cj,mj, ℓj, vj, t) =

∫ ∞

0

e−ρtuj(cj(t),mj(t), ℓj(t), vj(t))dt, (5)

where ρ > 0 is the subjective discount rate.

Furthermore, the nominal assets of the household–firm unit j are represented as

Aj. These assets Aj comprise money Mj(≡ pmj) and bonds Bj; therefore, Aj =

Mj +Bj. Denoting the nominal interest rate for bonds as R, the budget constraint

equation for household–firm unit j can be represented as follows: Ȧj = pjyj+RBj−
pcj − psj, where sj denotes lump-sum taxes (subsidies if negative). This equation

can be rewritten in real terms as follows:

ȧj =
pj
p
yj + raj − cj − sj −Rmj, (6)

where aj denotes the real assets held by the household–firm unit j, and r ≡ R − v

is the real interest rate.

Moreover, we assume that 1/ζ > 0 units of the labor force are required to pro-

duce one unit of all kinds of products. Accordingly, the production function of

the household–firm unit j can be expressed as yj = ζℓj. Under this technology,

household–firm unit j faced with the demand function for product j in (2) deter-

mines the paths of cj, mj, and vj that maximize lifetime utility in (5), subject to the

restrictions in (4) and (6). Solving this optimization problem yields the following
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equations (see Appendix A.1):

ċj
cj

= r − ρ, (7)

mj =
1− ε

ε

cj
R
, (8)

v̇j = ρ(vj − v∗)− ϕ

ηζ1+ψ
y1+ψj +

ε(ϕ− 1)

η

pjyj
pcj

. (9)

Equations (7), (8), and (9) denote an Euler equation, the demand function for

money, and New Keynesian Phillips curve, respectively. Economically significant

solutions are also required to satisfy the transversality conditions, expressed as

limt→∞ e−ρtµ1(t)aj(t) = 0 and limt→∞ e−ρtµ2(t)pj(t) = 0, where µ1 and µ2 are the

costate variables of the state variables aj and pj, respectively.

Considering the symmetry between all types of household–firm units, the sub-

script j is dropped from all variables. Additionally, the assumption that j ∈ [0, 1]

leads to m ≡
∫ 1

0
mjdj and c ≡

∫ 1

0
cjdj, where m and c are the aggregative values

of real money balances and consumption, respectively. Finally, the market-clearing

condition for the final goods market is:

y = c. (10)

2.3 Central bank

We consider a situation in which the central bank manipulates the nominal interest

rate according to deviations of the inflation rate v and output y from their steady-

state values v∗ and y∗. This assumption implies that the central bank’s objective is

to stabilize the economy.

We further assume that a policy lag exists in relation to the central bank’s

recognition of actual economic conditions. Recognition of the output level seems to

take longer than the recognition of the inflation rate because, in most countries, the

inflation rate is announced monthly, whereas GDP is announced quarterly. Thus, in

this study, we assume that only output targeting experiences a delay. Accordingly,

the monetary policy rule can be expressed as follows:

R(t) = R(v(t)− v∗, y(t− τ)− y∗), (11)
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where τ ≥ 0 represents the policy lag. The function R is assumed to satisfy the

following properties:

R(0, 0) = R̄,
∂R

∂v(t)
> 0,

∂R

∂y(t− τ)
≥ 0,

where R̄ > 0 is the target nominal interest rate level that corresponds to a situation

in which both inflation and output are consistent with their target levels.

If ∂R/∂y(t− τ) = 0, the policy rule in (11) becomes a simple interest rate rule

that does not consider the output a target variable. In this case, a policy is referred

to as active if ∂R/∂v(t) > 1 and passive if ∂R/∂v(t) < 1, consistent with previous

studies.

2.4 Dynamic system

The differential equation system with two endogenous variables, y and v, can be

derived from (7) and (9)–(11) as follows:2

ẏ(t) = [R(v(t)− v∗, y(t− τ)− y∗)− v(t)− ρ]y(t),

v̇(t) = ρ(v(t)− v∗)− ϕ

ηζ1+ψ
y(t)1+ψ +

ε(ϕ− 1)

η
.

(12)

In the case of τ > 0, the first equation becomes a delay differential equation.

Generally, delay differential equation systems require the variables’ initial con-

ditions not only at time t = 0 but also for t− τ ≤ t < 0. If these values are not set,

the system will not operate. However, the initial values that household–firm units

can determine at time t = 0 are only y(0) and v(0) because values for t− τ ≤ t < 0

are “past values.” Therefore, the values for t − τ ≤ t < 0 should be considered

as given, even if they are non-predetermined variables. Thus, as with the standard

model, the equilibrium is locally determinate (locally stable) when the system has

two roots with positive real parts. In contrast, the equilibrium is indeterminate if

fewer than two roots have positive real parts and unstable (an equilibrium path does

not exist) if more than two roots have positive real parts.

2The only role that (8) plays in our model is to determine the level of the lump-sum tax sj

through the money-market-clearing condition and the government’s budget constraint. Therefore,

(8) can be separated from the examined differential equation system.
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3 A case without a policy lag

To clarify the effect of a policy lag on local equilibrium determinacy, we first briefly

analyze the standard case that does not contain a policy lag (τ = 0). The steady-

state values of system (12) are given by y∗ = ζ(ϕ−1
ϕ
)

1
1+ψ , and v∗ = R̄ − ρ. By

linearizing system (12) around the steady-state (y∗, v∗), the equations become[
˙̂y(t)
˙̂v(t)

]
= J0

[
ŷ(t)

v̂(t)

]
with J0 =

[
D1y

∗ (D2 − 1)y∗

−A21 ρ

]
, (13)

where ŷ(t) ≡ y(t) − y∗, v̂(t) ≡ v(t) − v∗, A21 ≡ (1 + ψ)(ϕ/(ηζ1+ψ))y∗ψ > 0, D1 ≡
∂R(0, 0)/∂y ≥ 0, and D2 ≡ ∂R(0, 0)/∂v > 0.

The characteristic equation of this system can be expressed using matrix J0 as

follows:

∆0(λ) = λ2 − trJ0λ+ detJ0 = 0,

where λ is the characteristic root. This equation has at least one positive root

because trJ0 = (D1y
∗ + ρ) > 0. Moreover, if detJ0 = [D1ρ + (D2 − 1)A21]y

∗ > 0,

two roots with positive real parts exist. Conversely, if detJ0 < 0, one positive

and one negative real root exist. Accordingly, we obtain the following well-known

results:

Proposition 1 When τ = 0, the equilibrium of system (12) is locally determinate

if D2 > D̄ ≡ 1− D1ρ
A21

and locally indeterminate if D2 < D̄.

This proposition is illustrated in Figure 1.3 In the case of simple inflation tar-

geting (D1 = 0), Proposition 1 can be rewritten as follows:

Corollary 1 When τ = 0 and D1 = 0, the equilibrium of system (12) is locally

determinate if D2 > 1 and locally indeterminate if D2 < 1.

This is the Taylor principle, which asserts that monetary policy must be active to

achieve local equilibrium determinacy under inflation targeting. However, in the case

of inflation–output targeting (D1 > 0), the equilibrium can be locally determinate

even if D2 < 1 because D̄ < 1, implying that adding output as one of the central

bank’s target variables makes economic stability easier to achieve (Bullard and Mitra

3The same figure can also be observed in Chapter 4 in Gaĺı (2015).
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0
 D1

1
 D

2

Figure 1 Equilibrium determinacy in the case of inflation–output targeting without a

policy lag

2002). This result is attributed to the proportional relationship between v and y.

Under inflation–output targeting, the nominal interest rate responds not only to the

inflation rate v but also to output y. Therefore, the interest rate’s response becomes

greater than that in the case without output targeting. Consequently, the potential

for achieving determinacy is higher.

4 A case with a policy lag

In this section, we assume τ > 0 and consider the conditions for the local deter-

minacy of the equilibrium.4 Linearizing (12) around the steady-state (y∗, v∗), we

obtain:

˙̂y(t) = D1y
∗ŷ(t− τ) + (D2 − 1)y∗v̂(t),

˙̂v(t) = −A21ŷ(t) + ρv̂(t).

Moreover, assuming trial solutions of the form v̂(t) = Cve
λt and ŷ(t) = Cye

λt (where

Cv and Cy are arbitrary constants and λ is an eigenvalue), we obtain[
˙̂y(t)
˙̂v(t)

]
= J1

[
ŷ(t)

v̂(t)

]
with J1 =

[
D1y

∗e−λτ (D2 − 1)y∗

−A21 ρ

]
.

4Matsumoto and Szidarovszky (2013) present details of the method used in this section.
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The characteristic equation is now expressed as follows:

∆1(λ) = λ2 − trJ1λ+ detJ1

= λ2 − ρλ+ A21(D2 − 1)y∗ + (ρ− λ)D1y
∗e−λτ = 0. (14)

This equation has an infinite number of roots owing to the existence of the expo-

nential function e−λτ .

4.1 Stability crossing

To examine how the signs of the roots of (14) change with an increase in τ , we first

seek the points at which zero or pure imaginary roots appear. At these points, the

number of roots with positive real parts can vary; in other words, the steady-state’s

dynamic properties can change. Let z > 0 denote the imaginary parts of the roots,

and i indicate the imaginary unit. We seek the values of τ at which the real root

λ = 0 or the imaginary roots λ = ±iz appear.

4.1.1 Real roots

When λ = 0 arises, the sign of a real root changes. However, if D2 ̸= D̄, ∆1(0) =

[ρD1 + (D2 − 1)A21]y
∗ ̸= 0. Therefore, in this case, λ = 0 cannot be a root, and the

number of positive real roots does not change. In contrast, if D2 = D̄, λ = 0 can

be a root. However, because this condition does not depend on τ , the number of

positive real roots also does not change in response to a change in τ .

4.1.2 Complex roots

When the roots λ = ±iz arise, the number of complex roots with positive real parts

changes. Substituting λ = ±iz into (14) yields the following expression:

∆1(±iz) = −z2 ∓ iρz + A21(D2 − 1)y∗ + (ρ∓ iz)D1y
∗e∓iτz = 0.

Furthermore, applying Euler’s formula (e±iτz = cos τz ± i sin τz) to this equation

yields

−z2 ∓ iρz + A21(D2 − 1)y∗ + (ρ∓ iz)D1y
∗ cos τz ∓ i(ρ∓ iz)D1y

∗ sin τz = 0.
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For the equality to hold here, both the real and imaginary parts of the left-hand

side expression must equal zero, that is,

− z2 + A21(D2 − 1)y∗ + ρD1y
∗ cos τz − zD1y

∗ sin τz = 0, (15)

− ρz − zD1y
∗ cos τz − ρD1y

∗ sin τz = 0. (16)

Solving these equations for cos τz and sin τz yields

cos τz = −ρA21(D2 − 1)

(ρ2 + z2)D1

, (17)

sin τz =
−z(ρ2 + z2) + zy∗A21(D2 − 1)

D1y∗(ρ2 + z2)
, (18)

where 2hπ < τz < 2(1 + h)π, π = 3.14159 . . ., h = 0, 1, 2, 3, . . ..

Moreover, the sum of squares of (17) and (18) yields the quartic equation of z

as follows:5

z4 + χz2 +
1

4
γ = 0, (19)

where

χ ≡ ρ2 − 2A21(D2 − 1)y∗ − (D1y
∗)2, (20)

γ ≡ 4y∗2{A2
21(D2 − 1)2 − (ρD1)

2}. (21)

Solving for z yields

z1 =
√
Z+, z2 = −

√
Z+, z3 =

√
Z−, z4 = −

√
Z−, (22)

where

Z+ ≡ −χ+
√
χ2 − γ

2
, Z− ≡ −χ−

√
χ2 − γ

2
. (23)

By definition, z should be a positive real number. Hence, both z2 and z4 can be

ignored, while considering only z1 and z3.

5More precisely, the calculation yields the equation (ρ2+ z2)(z4+χz2+ 1
4γ) = 0. The solutions

of the equation ρ2+z2 = 0 are given by z = ±iρ; however, z should represent positive real numbers.

Therefore, these solutions can be ignored.
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4.2 Division of the (D1, D2)-plane

In this subsection, based on the analysis in the previous subsection, we divide the

(D1, D2)-plane according to the characteristics of the roots.

From (22) and (23), the properties of z1 and z3 can be divided mainly into two

types depending on whether χ > 0 or χ < 0. When χ > 0, properties of z1 and

z3 are classified as shown in Table 1, where “−” and “+” indicate negative and

positive real numbers, respectively, and ξ denotes a complex number. When χ < 0,

the properties of z1 and z3 are classified as shown in Table 2.

γ ≥ χ2 χ2 > γ > 0 γ = 0 γ < 0

Z+ ξ − 0 +

Z− ξ − − −
z1 ξ ξ 0 +

z3 ξ ξ ξ ξ

Table 1 Cases with χ > 0

γ > χ2 χ2 ≥ γ > 0 γ = 0 γ < 0

Z+ ξ + + +

Z− ξ + 0 −
z1 ξ + + +

z3 ξ + 0 ξ

Table 2 Cases with χ < 0

Based on Tables 1 and 2, the (D1, D2)-plane is divided into several regions. The

sets (D1, D2) that establish χ = 0 satisfy the following equation:

D2 = − y∗

2A21

D2
1 +

ρ2

2A21y∗
+ 1.

This relation appears as the downward curve in Figure 2(a), with D1 on the hori-

zontal axis and D2 on the vertical axis. The intercepts D̂1 and D̂2 are defined as
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0
 D1

1

 D
2

 =0

(a) Curve χ = 0

0
 D1

1

 D
2

 =0

 =0

(b) Lines γ = 0

(c) Curves γ = χ2

Figure 2 Boundaries on the (D1, D2)-plane

follows:

D̂1 ≡
√
ρ2 + 2A21y∗

y∗
> 0,

D̂2 ≡ 1 +
ρ2

2A21y∗
> 1.

The region that establishes χ > 0 is referred to as Region X.

Next, we depict curves that establish γ = 0 and γ = χ2 on the (D1, D2)-plane.

The equation γ = 0 can be rewritten as

D2 =

 ρ
A21

D1 + 1 if D2 > 1,

− ρ
A21

D1 + 1 ≡ D̄ if D2 ≤ 1.
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Accordingly, we obtain Figure 2(b).

Moreover, equation γ = χ2 can be rewritten as follows:

D2 = 1 +
ρ4 + (D1y

∗)4 + 2(ρy∗D1)
2

4A21y∗{ρ2 − (D1y∗)2}
.

The necessary and sufficient condition for γ > χ2 to hold is given by

4A21y
∗{ρ2 − (D1y

∗)2}(D2 − 1) > ρ4 + (D1y
∗)4 + 2(ρy∗D1)

2.

Hence, when D1y
∗ < (>)ρ, the condition for γ > χ2 is

D2 > (<)1 +
ρ4 + (D1y

∗)4 + 2(ρy∗D1)
2

4A21y∗{ρ2 − (D1y∗)2}
. (24)

Therefore, Figure 2(c) can be obtained. Note that when D1y
∗ > ρ, the right-hand

side expression of (24) may become either positive or negative. When it is negative,

the curve γ = χ2 exists in the negative region of D2 for all D1 > ρ/y∗.

4.3 Positional relationship between curves

This subsection considers the positional relationship between the curves shown in

Figs. 2(a)–(c).

The intercept of the curve χ = 0 in Figure 2(a) is D̂2 = 1 + ρ2

2A21y∗
, and that

of the curve γ = χ2 in Figure 2(c) is D2 = 1 + ρ2

4A21y∗
. Therefore, for D1 < ρ/y∗,

the curve χ = 0 starts from a point located above the starting point of the curve

γ = χ2, and the two curves intersect in the positive quadrant (Figure 3(a)).

At this intersection, γ = 0 holds because both χ = 0 and γ = χ2 hold. Accord-

ingly, the curves γ = 0 and γ = χ2 should have a common point. Moreover, because

γ < 0 and γ > χ2 are incompatible, the curve γ = χ2 cannot pass below the line

γ = 0. Therefore, these two curves have a point of tangency.

In summary, a point exists at which curves γ = 0, γ = χ2, and χ = 0 pass

through, and at that point, curves γ = 0 and γ = χ2 are in contact with each

other.6

In addition, γ = χ2 = 0 is also established at the intersection of the downward

segment of γ = 0 and the curve χ = 0. A similar argument applies to the case in

which D1 > ρ/y∗.

6D̂1 > ρ/y∗ necessarily holds. Furthermore, the curve χ = 0 passes through the point

(D1, D2) = (ρ/y∗, 1).

14



(a) Positional relationship between curves

0
 D1

1

 D
2

(b) Eight regions

Figure 3 Partition of the (D1, D2)-plane

Some algebra shows that the intersections of curves χ = 0 and γ = 0 are(
ρ(
√
2−1)
y∗

, 1 + (
√
2−1)ρ2

y∗A21

)
and

(
ρ(
√
2+1)
y∗

, 1− (
√
2+1)ρ2

y∗A21

)
. The former coordinates always

belong to the positive quadrant, corresponding to the upper intersection shown in

Figure 3(a). Conversely, the condition that A21/ρ > (1 +
√
2) ρ

y∗
must be satisfied

for the latter coordinates lie in the positive quadrant.7 This condition is equivalent

to the requirement that the intercept of the curve χ = 0 on the horizontal axis is

smaller than that of line γ = 0; that is, D̂1 < A21/ρ.

In summary, eight regions arise as combinations of Figs. 2(a)–(c), as shown in

Figure 3(b). In RegionX, whether γ > χ2 or γ < χ2 does not affect the properties of

z1 and z3, as shown in Table 1. When A21/ρ ≤ (1+
√
2) ρ

y∗
holds and the intersection

of the downward segment of γ = 0 and curve χ = 0 does not exist in the positive

quadrant, Regions A1 and A2 do not exist.

4.4 Stability change

Before moving on to the dynamic analysis of each region, we present a proposition

that serves as the criterion for clarifying the direction of change in stability.

7This condition is equivalent to (1 + ψ)(ϕ − 1)/η > (1 +
√
2)ρ2. Therefore, the condition is

more likely to hold for larger values of ψ and ϕ and smaller values of ρ and η. Typically, this is

satisfied because the subjective discount rate ρ takes a sufficiently small value.
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4.4.1 Stability crossing points

If neither z1 nor z3 are positive real numbers, pure imaginary roots λ = iz1 and iz3

will not appear. Hence, in this case, a change in τ does not change the dynamic

properties of the system. Conversely, if z1 and/or z3 are positive real numbers,

the sign of the real parts of the complex roots changes at the point where λ = izk

(k = 1, 3) holds.

For a given z, the value of τ that satisfies (17) and (18) exists in each interval

(2hπ, 2(1 + h)π), h = 0, 1, 2, . . .. Let τ kh be the values of τ corresponding to zk

(k = 1, 3) such that 2hπ < τ khzk < 2(1 + h)π. Different expressions for τ kh should be

used depending on whether 2hπ < τ khzk ≤ (1+2h)π or (1+2h)π < τ khzk < 2(1+h)π.

If 2hπ < τ khzk ≤ (1 + 2h)π, τ kh is defined as follows:

τ kh =
1

zk
cos−1

[
−ρA21(D2 − 1)

(ρ2 + z2k)D1

]
+

2πh

zk
. (25)

However , if (1 + 2h)π < τ khzk < 2(1 + h)π, cos τ khzk belongs to the upward-sloping

part of the cosine curve, which is not the range of the arccosine. Therefore, τ kh can

be defined as follows.

τ kh =
1

zk

{
2π − cos−1

[
−ρA21(D2 − 1)

(ρ2 + z2k)D1

]}
+

2πh

zk
. (26)

If z1 is a positive real number, the following relation holds:

z21 = Z+ = y∗A21(D2 − 1)− ρ2 +
ρ2 + (D1y

∗)2 +
√
χ2 − γ

2

> y∗A21(D2 − 1)− ρ2.

Hence, from (18), sin τ 1hz1 is negative, and (1 + 2h)π < τ 1hz1 < 2(1 + h)π holds for

all h = {0, 1, 2, 3, . . .}. Therefore, τ 1h is defined by (26).

If z3 is a positive real number, the sign of sin τ 3hz3 can be either positive or

negative. From (22) and (23), we obtain the following equation:

z23 = Z− = y∗A21(D2 − 1)− ρ2 + φ(D1),

where φ(D1) ≡
ρ2+(D1y∗)2−

√
χ2−γ

2
. From (18), sin τ 3hz3 < 0 and (1 + 2h)π < τ 3hz3 <

2(1+h)π hold if and only if φ(D1) is positive. Differentiating φ(D1) with respect to

D1 yields φ
′(D1) = −2D1y∗

2(Z−+ρ2)√
χ2−γ

. When z3 is a real number, Z− must be positive;
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therefore, φ′(D1) < 0. Moreover, we can show that φ(ρ/y∗) = 0. Therefore, φ(D1)

is positive only if D1 < ρ/y∗.

The above result indicates that when D1 < ρ/y∗, sin τ 3hz3 is negative, and τ 3h is

defined by (26). In contrast, when D1 ≥ ρ/y∗, sin τ 3hz3 > 0 holds, and (25) should

be used for τ 3h . As shown in Tables 1 and 2, z3 > 0 holds only when χ < 0 and

χ2 ≥ γ > 0. This case corresponds to Regions A2 and C1 in Figure 3(b). In Region

A2, τ
3
h is always defined by (26) because D1 > ρ/y∗. However, in Region C1, both

cases can arise depending on the value of D1.

In either case, when τ crosses τ kh , h = 0, 1, 2, 3, . . ., the sign of the real parts of

the complex roots changes. These points are referred to as stability crossing points.

4.4.2 Direction of crossing

The crossing directions in the sign of the complex roots can be examined as follows:

When τ increases, if dReλ
dτ

|τ=τkh > 0, the sign changes from negative to positive. In

contrast, if dReλ
dτ

|τ=τkh < 0, the sign changes from positive to negative. In other words,

destabilization occurs if dReλ
dτ

|τ=τkh > 0, whereas stabilization occurs if dReλ
dτ

|τ=τkh < 0.

Using (14), we can prove the following Lemma.

Lemma 1 For positive values of zk, k = 1, 3, dReλ
dτ

|τ=τ1h > 0 and dReλ
dτ

|τ=τ3h < 0

hold for all h = 0, 1, 2, 3, . . ..

proof. See Appendix A.2.

Lemma 1 indicates that destabilization occurs when τ crosses τ 1h . Conversely,

stabilization occurs when τ crosses τ 3h .

5 Dynamic analysis

5.1 Equilibrium determinacy in Regions X1, X3, A1, and C2

In Regions X1, X3, A1, and C2, both z1 and z3 are complex numbers. Hence,

a stability crossing does not occur; that is, the local equilibrium determinacy is

unaffected by variations in τ .
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Proposition 1 (Figure 1) suggests that the equilibrium is locally indeterminate

in Regions X1 and A1, irrespective of the value of τ . In Regions X3 and C2, the

equilibrium is locally determinate, irrespective of the value of τ .

Accordingly, the following proposition can be stated.

Proposition 2 1. When D1 ≤ ρ(
√
2−1)
y∗

and D2 >
ρ
A21

D1+1 (Region X3) or D1 ∈
[ρ(

√
2−1)
y∗

, ρ
y∗
) and D2 > 1 + ρ4+(D1y∗)4+2(ρy∗D1)2

4A21y∗{ρ2−(D1y∗)2} (Region C2), the equilibrium of

system (12) is locally determinate for all τ ≥ 0.

2. When D1 ≤ ρ(
√
2+1)
y∗

and D2 < D̄ (Region X1) or D1 >
ρ(
√
2+1)
y∗

and D2 <

1 + ρ4+(D1y∗)4+2(ρy∗D1)2

4A21y∗{ρ2−(D1y∗)2} (Region A1), the equilibrium of system (12) is locally

indeterminate for all τ ≥ 0.

This proposition indicates that the interval of D1 in which the lag has no effect

is larger when D2 has greater distances from 1. In particular, the policy lag asso-

ciated with output targeting is highly likely to have no effect on the equilibrium

determinacy when the monetary policy shows only a slight reaction to output.

5.2 Equilibrium determinacy in Regions X2 and B

In Regions X2 and B, z3 is a complex number, and z1 is a positive real number.

Lemma 1 supports the conclusion that destabilization occurs at every stability cross-

ing point τ 1h , h = 0, 1, 2, 3, . . ., when τ increases. Therefore, in these regions, the

equilibrium is locally determinate for 0 ≤ τ < τ 10 and unstable for τ > τ 10 . Thus,

the following proposition can be derived.

Proposition 3 When D1 > max
{
(D2 − 1)A21

ρ
,−(D2 − 1)A21

ρ

}
(Regions X2 and

B), a stability crossing point τ 10 exists such that the equilibrium is locally determinate

for 0 ≤ τ < τ 10 ; in contrast, it is unstable for τ > τ 10 .

In this section, we present numerical examples. In Figure 4, we plot the graphs of

τ 1h , h = 0, 1, 2, in (26) with D1 on the horizontal axis for a given D2. The structural

parameter values assumed here are based on those used by Tsuzuki (2014): ϕ = 21,

ρ = 0.01, η = 200, and ψ = 1. In addition, we set ζ = 0.01. The graphs of τ 1h are

downward curves on the (D1, τ)-plane. On the boundary between Regions X2 and

X3 or X2 and X1, τ
1
0 diverges to infinity because z1 = 0 for γ = 0 and χ > 0. In
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(a) 1 < D2 < 1 + (
√
2−1)ρ2

y∗A21
(b) D2 < 1

Figure 4 Equilibrium dynamics on the (D1, τ)-plane

this figure, the numbers in parentheses indicate the number of roots with positive

real parts. Figure 4(a) shows the case of D2 > 1, in which the equilibrium is locally

determinate under pure inflation targeting (D1 = 0). Figure 4(b) shows the case

of D2 < 1, in which the equilibrium is locally indeterminate under pure inflation

targeting. In both cases, when D1 is sufficiently small, a stability crossing point does

not exist; thus, a change in policy lag will never impact the equilibrium determinacy,

as argued in Proposition 2.

However, whenD1 is large to some extent, the stability crossing point τ 10 emerges,

and an increase in policy lag causes the equilibrium to change from determinate

to unstable. Such a destabilizing effect arising from policy lag is consistent with

Tsuzuki’s (2014) findings. Furthermore, the larger the value of D1, the smaller the

threshold value of τ at which the stability changes from determinate to unstable.

That is, when monetary policy is sensitive to output fluctuations, an increase in

the policy lag associated with output targeting is more likely to cause economic

instability.

This figure also clearly demonstrates that when a policy lag exists, the determi-

nate equilibrium becomes unstable in response to an increase in D1. In particular,

Figure 4(a) highlights that although the equilibrium is determinate under simple

inflation targeting, it may lose its stability for positive values of D1 and τ . There-

fore, introducing output targeting may trigger the instability of the equilibrium,

thus creating volatility in the economy when a policy lag exists.

In the absence of a lag, an increase in D1 necessarily contributes to stabilizing
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the economy, as shown in Proposition 1 and Figure 1. However, in cases where the

lag is positive, this is not necessarily the case. Rather, the economy may become

unstable because of an increase in D1. The threshold value of D1 is smaller for a

larger value of τ ; that is, when a larger policy lag exists, economic instability is

more likely to result from output targeting.

5.3 Equilibrium determinacy in Regions A2 and C1

Finally, we examine the remaining cases. In Regions A2 and C1, both z1 and z3 are

positive real numbers because χ > 0 and χ2 ≥ γ > 0 hold. In this case, two types

of stability crossing points exist, and destabilization and stabilization may occur by

increasing τ (see Lemma 1). The difference between Regions A2 and C1 is that in

the absence of a policy lag, the equilibrium is locally indeterminate in Region A2

(where one positive root exists), whereas in Region C1, the equilibrium is locally

determinate (where two positive roots exist). The following discussion explores the

features of these regions in more detail.

5.3.1 Analysis of Region A2

In Region A2, both τ 1h and τ 3h are defined by (26). By differentiating (26) with

respect to zk,
8 we obtain

dτ kh
dzk

= −τ
k
h

zk
+

2ρA21(D2 − 1)

(ρ2 + z2k)
2D1

√
1−

(
ρA21(D2−1)

(ρ2+z2k)D1

)2
. (27)

In Region A2, D2 < 1 holds; hence, dτ kh/dzk < 0. Since z1 > z3, we obtain τ 1h <

τ 3h , h = 0, 1, 2, 3, . . .. Accordingly, when τ increases from zero, the first-appearing

stability crossing point is τ 10 . At τ
1
0 , the number of complex roots with positive real

parts increases by two, and the equilibrium becomes locally unstable.

However, the next stability crossing point can be either τ 30 or τ 11 . Because z1 > z3,

the increment of τ 1h is smaller than that of τ 3h for an increase in h (see (26)). There-

fore, τ 1h appears more frequently than τ 3h . In other words, destabilization occurs

more frequently. Hence, the equilibrium becomes locally unstable for a sufficiently

large τ .

8The derivative of the function y = cos−1(x) is given by dy
dx = − 1√

1−x2
.
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Figure 5 Stability changes in Region A2

Figure 5 plots the graphs of τ 1h and τ 3h for D2 < 1 − (
√
2+1)ρ2

y∗A21
with D1 on the

horizontal axis. In Region A2, each τ
1
h is a downward curve, and τ 30 is an upward

curve. This region’s remarkable phenomenon is observed for D1 ∈ (Da
1 , D

b
1). In this

case, τ 10 < τ 30 < τ 11 holds. The equilibrium determinacy changes from indeterminate

to unstable at the first stability crossing point τ 10 when τ is increased from zero.

However, it changes from unstable to indeterminate at the second stability crossing

point τ 30 . That is, stabilization occurs. The equilibrium changes are as follows:

indeterminate–unstable–indeterminate.

Regarding D1 > Db
1, τ

3
0 is larger than τ 11 . The sign of the real parts of a pair of

complex roots changes from positive to negative when τ passes τ 30 . However, such a

change does not affect the determinacy of equilibrium because five or more complex

roots with positive real parts already exist. The equilibrium is locally unstable for

all τ > τ 10 and never becomes indeterminate again as a result of increasing τ .

In Region A2, policy lag has complex effects on the equilibrium determinacy

property, as shown above. However, the determinate equilibrium will never be

achieved because the number of roots with positive real parts is always odd. Next,

we examine Region C1.
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5.3.2 Analysis of Region C1

In Region C1, τ
3
h is defined by (25) for D1 ≥ ρ/y∗ and by (26) for D1 < ρ/y∗. In

this region, it is uncertain whether τ 10 or τ 30 is larger. The first-appearing stability

crossing point can be either τ 10 or τ 30 . The increment of τ 1h is smaller than that of τ 3h
with an increase in h; that is, τ 1h appears more frequently than τ 3h . Therefore, for

sufficiently large values of τ , the equilibrium is unstable.

When γ = 0, z3 = 0; therefore, τ 3h diverges to infinity. Then, τ 3h > τ 1h holds in

the neighborhood of the boundary between Regions C1 and B. Accordingly, for a

sufficiently large value of D1, the first-appearing stability crossing point is τ 10 when

τ increases from zero. The equilibrium becomes locally unstable at the first stability

crossing point. The next stability crossing point can be either τ 30 or τ 11 . If it is τ 30 ,

the equilibrium can recover its stability by further increasing τ .

Figure 6 plots the graphs of τ 1h and τ 3h for D2 > 1 + (
√
2+1)ρ2

y∗A21
with D1 on the

horizontal axis.9 In this figure, both cases of τ 10 < τ 30 and τ 30 < τ 10 can be observed.

When D1 is sufficiently small and located in the interval (Dc
1, D

d
1), τ

3
0 < τ 10 holds

and the first-appearing stability crossing point is τ 30 . At this point, the equilibrium

determinacy changes from determinate to indeterminate. The second-appearing

stability crossing point is τ 10 , at which the determinacy changes from indetermi-

nate to determinate. That is, the equilibrium changes are as follows: determinate–

indeterminate–determinate.

When D1 is larger than Dd
1, τ

1
0 < τ 30 holds. In this case, the first-appearing

stability crossing point becomes τ 10 , and destabilization occurs first. For D1 ∈
(Dd

1, D
e
1), τ

1
0 < τ 30 < τ 11 holds. In this case, increasing τ from zero causes the

equilibrium determinacy to change from determinate to unstable at the first stability

crossing point τ 10 , and changes from unstable to determinate at the second stability

crossing point τ 30 . The equilibrium changes are as follows: determinate–unstable–

determinate. This indicates that the stability lost by increasing τ is recovered by

further increasing τ . We must emphasize that an increase in policy lag may not

only cause destabilization, as pointed out in the previous literature (e.g., Tsuzuki

2014) but may also lead to stabilization if the monetary policy has multiple target

variables.

9More precisely, we depict the case of D2 > 1 + ρ2

2A21
y∗ in Figure 6; therefore, Region X3 does

not appear.

22



Figure 6 Stability changes in Region C1

Finally, for D1 > De
1, τ

3
0 is larger than τ 11 . In this case, an increase in τ also has

a stabilizing effect. The sign of the real parts of a pair of complex roots changes

from positive to negative when τ is increased and passes τ 30 . However, such a change

does not influence the determinacy of equilibrium because at least six roots already

have positive real parts when τ passes τ 30 . Once lost, the determinacy of equilibrium

cannot be recovered by increasing τ .

Figure 6 also highlights the destabilizing effect of the output targeting on the

equilibrium determinacy. That is, when a policy lag exists, an equilibrium that is

determinate without output targeting may lose its stability by increasing D1. The

threshold value of D1 that triggers instability is not monotone with respect to τ

owing to the coexistence of the stabilizing and destabilizing effects resulting from

the policy lag.

The results obtained from the above analysis can be summarized as follows.

Proposition 4 1. When D1 >
ρ(
√
2+1)
y∗

and max
{
0, 1 + ρ4+(D1y∗)4+2(ρy∗D1)2

4A21y∗{ρ2−(D1y∗)2}

}
<

D2 < D̄ ≡ 1 − ρD1

A21
(Region A2), the equilibrium is locally indeterminate for

0 ≤ τ < τ 10 . For τ > τ 10 , two typical cases may arise: (i) In the case that

τ 10 < τ 30 < τ 11 , the equilibrium changes as follows: unstable–indeterminate–
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unstable–· · · . (ii) In the case that τ 10 < τ 11 < τ 30 , the equilibrium changes as

follows: unstable–unstable–unstable–· · · .

2. When D1 >
ρ(
√
2−1)
y∗

and 1 + ρ4+(D1y∗)4+2(ρy∗D1)2

4A21y∗{ρ2−(D1y∗)2} ≥ D2 ≥ 1 + ρD1

A21
(Region C1),

if τ 30 > τ 10 , the equilibrium is locally determinate for 0 ≤ τ < τ 10 . For τ > τ 10 ,

two typical cases may arise: (i) In the case that τ 10 < τ 30 < τ 11 , the equilibrium

changes as follows: unstable–determinate–unstable–· · · . (ii) In the case that

τ 10 < τ 11 < τ 30 , the equilibrium changes as follows: unstable–unstable–unstable–

· · · .

Conversely, if τ 30 < τ 10 , the equilibrium determinacy changes to indeterminate

by increasing τ at first, and recovers its determinacy by further increasing τ .

Figure 7 summarizes the dynamic properties that typically arise in our model.

For Regions X1, X3, A1, and C2, a policy lag does not affect their dynamic proper-

ties; however, Regions X2, A2, B, and C1 can change dynamic properties in response

to an increase in policy lag. In Regions X2 and B, a policy lag necessarily causes

instability. However, in Region C1, a policy lag may contribute to achieving equi-

librium determinacy.

Previous literature (e.g., Tsuzuki 2015) indicates that a central bank can elimi-

nate indeterminacy by introducing a policy lag. In contrast, our results demonstrate

that, in some cases, a policy lag can achieve determinacy by eliminating instability.

6 Conclusion

This study examined the effect of inflation–output targeting policies using an NK

framework that considers a recognition or implementation lag in output targeting.

Previous studies have demonstrated that an increase in the time lag associated

with inflation targeting could eliminate equilibrium indeterminacy or cause insta-

bility. By contrast, this study finds that an increase in a policy lag associated with

output targeting can effectively eliminate instability.

In the conventional models that do not consider the existence of a policy lag,

output targeting is regarded as a complement to inflation targeting; that is, equilib-

rium determinacy is established if the interest rate responds to the output in order

to compensate for the interest rate’s low response to the inflation rate. However,

24



Figure 7 Summary of changes in dynamics

we showed that when there is a delay in the response to fluctuations in the output,

a large response of the interest rate to the output does not necessarily stabilize the

economy. This suggests that policymakers should carefully select target variables,

considering the presence and length of a lag. Specifically, if D2 is at a level that is

included in Region C1 in Figure 7, determinacy may be achieved by setting the level

of D1 appropriately even if a delay occurs in the central bank’s response to output.

When time lags are present in both inflation targeting and output targeting,

the economic model becomes a system of differential equations with two fixed de-

lays. The properties of this type of dynamical system can be examined using the

mathematical methods developed by Gu et al. (2005), Lin and Wang (2012), and

Matsumoto and Szidarovszky (2012). The analysis of such cases could be a future

research topic.

Another direction of research involves the analysis of global dynamics. This

study discusses local dynamics. When the steady-state is locally unstable, no path

exists that converges to the steady-state. The paths that continue to move away from

the steady-state do not satisfy the transversality conditions of the household–firm’s

optimization problem. However, if a stable attractor such as a limit cycle exists
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around the steady-state, the equilibrium will be globally indeterminate because all

points on the cycle naturally satisfy the transversality conditions. The analysis of

global dynamics remains a topic for future research.

A Appendix

A.1 Dynamic optimization

The current-value Hamiltonian of the dynamic optimization problem in Section 2.2

is expressed as follows:

Hj(cj,mj, vj, aj, pj, µ1, µ2) = ε log cj + (1− ε) logmj −
1

1 + ψ

[
1

ζ

(
pj
p

)−ϕ

y

]1+ψ

− η

2
(vj − v∗)2 + µ1

[
pj
p

(
pj
p

)−ϕ

y + raj − cj − sj −Rmj

]
+ µ2vjpj,

where µ1 and µ2 are the costate variables of the state variables aj and pj, respectively.

The first-order conditions for optimality are as follows:

∂Hj

∂cj
= ε

1

cj
− µ1 = 0, (A.1)

∂Hj

∂mj

= (1− ε)
1

mj

− µ1R = 0, (A.2)

∂Hj

∂vj
= −η(vj − v∗) + µ2pj = 0, (A.3)

µ̇1 = ρµ1 −
∂Hj

∂aj
= (ρ− r)µ1, (A.4)

µ̇2 = ρµ2 −
∂Hj

∂pj
= ρµ2 − yψj

ϕ

ζ1+ψ
yj
pj

− µ1(1− ϕ)
yj
p
− µ2vj. (A.5)

Combining (A.1) and (A.4) yields (7). Furthermore, (A.1) and (A.2) yield Eq.

(8). Moreover, (A.3) yields the following two expressions:

µ2 =
η(vj − v∗)

pj
, µ̇2 =

ηv̇j
pj

− η(vj − v∗)

pj
vj.

Substituting these equations and (A.1) into (A.5) yields (9).
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A.2 Proof of Lemma 1

For calculational convenience, we examine the sign of Re(dλ
dτ
)−1|τ=τkh instead of that

of dReλ
dτ

|τ=τkh .
The differentiation of both sides of (14) with respect to τ yields

{2λ− ρ−D1y
∗e−λτ − τ(ρ− λ)D1y

∗e−λτ}dλ
dτ

= (ρ− λ)D1y
∗λe−λτ ,

or equivalently (
dλ

dτ

)−1

=
(2λ− ρ)eλτ

(ρ− λ)D1y∗λ
− 1

(ρ− λ)λ
− τ

λ
. (A.6)

By substituting (14) into (A.6) to eliminate eλτ , the equation becomes(
dλ

dτ

)−1

=
−(2λ− ρ)

[λ2 − ρλ+ A21(D2 − 1)y∗]λ
− 1

(ρ− λ)λ
− τ

λ
.

When λ = izk, the third term of the right-hand side expression becomes a pure

imaginary number and hence can be ignored in the discussion here.

Let the real part of the first term of the right-hand side expression be θ1, and the

imaginary part be ν1. Likewise, let the real part of the second term of the right-hand

side expression be θ2, and the imaginary part be ν2. Then, the following equalities

hold:
−2izk + ρ

[−z2k − iρzk +D1 + A21(D2 − 1)y∗]izk
= θ1 + iν1,

− 1

iρzk + z2k
= θ2 + iν2.

Expanding these equations produces two simultaneous equation systems in which

the unknown variables are θ1 and ν1, and θ2 and ν2, respectively; that is,ρ− θ1ρz
2
k − ν1z

3
k + ν1zkA21(D2 − 1)y∗ = 0

−2zk + θ1z
3
k − θ1zkA21(D2 − 1)y∗ − ν1ρz

2
k = 0ρzkθ2 + ν2z

2
k = 0

z2kθ2 − ν2ρzk + 1 = 0

Solving these systems yields

θ1 =
2{z2k − A21(D2 − 1)y∗}+ ρ2

{z2k − A21(D2 − 1)y∗}2 + ρ2z2k
,

θ2 = − 1

z2k + ρ2
.
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Therefore, the real part of (A.6) can be expressed as follows:

Re

(
dλ

dτ

)−1
∣∣∣∣∣
τ=τkh

= θ1 + θ2

=
Ξ

[{z2k − A21(D2 − 1)y∗}2 + ρ2z2k](z
2
k + ρ2)

, (A.7)

where

Ξ ≡ 2{z2k − A21(D2 − 1)y∗}(z2k + ρ2) + ρ2(z2k + ρ2)− {z2k − A21(D2 − 1)y∗}2 − ρ2z2k

= z4k + 2z2kρ
2 − 2A21(D2 − 1)y∗ρ2 + ρ4 − A2

21(D2 − 1)2y∗2. (A.8)

As the denominator of (A.7) is necessarily positive, we only need to observe the sign

of the numerator Ξ.

Using (20) and (21), (A.8) can be rewritten as follows: Ξ = z4k + 2z2kρ
2 + χρ2 −

1
4
γ. Further, by substituting (19) into this equation and using equation 2z2k + χ =

(2 − k)
√
χ2 − γ (k = 1, 3) obtained from (22) and (23), we get Ξ = (2 − k)(ρ2 +

z2k)
√
χ2 − γ. For real and positive values of zk, k = 1, 3,

√
χ2 − γ > 0. Therefore,

Lemma 1 holds. ■

References
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