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Abstract

In this study, a Lotka-Volterra competition model with two discrete de-

lays is considered. First we investigate stability conditions of the no-delay

model for a positive steady state by analyzing the associated characteris-

tic equation. Second, we establish the stability switching conditions of the

delay model under which stability of the model is switched to instability

and vice versa. Finally, some numerical simulations are performed to con-

firm the theoretical results such as Hopf bifurcations. However they do not

predict the birth of chaotic dynamics and the existence of multistability.
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1 Introduction

In this study, we examine a competitive Lotka-Volterra system (LV system

henceforth) with two discrete delays in population biology. It is shown first

that the stability conditions in terms of stability switching curves can be rig-

orously determined and second that the system can generate a wide variety of

dynamics ranging from simple dynamics involving limit cycles to complex dy-

namics involving chaotic behavior when its positive steady state loses stability.

A delay in the LV system has a long history. It is often observed that the

population growth of various species depend on the past history of their own

as well as that of their competitors. To reflect such history, delays are incor-

porated into the population dynamic systems. The delays have been thought

to have a destabilizing influence. Hatchinson’s equation is the prototype model

embodying the instabilizing delay phenomenon and is described by the logistic

equation with one delay. Since the logistic equation without delays is asymptot-

ically stable, there is a counterplay between a stabilizing negative feedback and

the destabilizing influence in the delay equation. May (1973) deals with this

phenomenon in the delay predator-prey framework and obtains the instability

result. Since then, there have been an enormous amount of works on delay

dynamics in the literature. This study follows the same direction and further

considers a generalized two species LV competitive system with multiple delays

that can be expressed as follows:

ẋ(t) = x(t) [ε1 − a11x(t− τ11)− a12y(t− τ12)] ,

ẏ(t) = y(t) [ε2 − a21x(t− τ21)− a22y(t− τ22)] ,

(1)

where x(t) and y(t) are the population densities of two competing species at

time t, ε1 > 0 and ε2 > 0 denote the intrinsic growth rates, τ ij ≥ 0 and αij
for i, j = 1, 2, i 6= j are time delays and positive parameters. Usually aii > 0
is assumed under which the growth follows the logistic equation in the absence

of competitors. The interactions between two species are classified into three

forms depending on the sign of aij . They are actually called competitive if

aij > 0, cooperative if aij < 0, and predator-prey if aij > 0 and aji < 0 where

the predator has a negative coefficient and the prey a positive one. We focus on

the competitive system and thus assume that the coefficients are all positive.

Further, the coefficients aii and ajj are called the crowding coefficients of two

species measuring the strength of intra-competition within the species and the

coefficients aij and aji are called the competitive coefficients measuring the

strengths of the inter-competitions between the species. The delay τ ij is called

the hunting delay while the delay τ ii is the feedback delay to the growth of the

species itself and gauges a maturation time.

Over the past few decades, a considerable number of studies have been made

on stability of the LV competition system. Those studies may be divided into

two groups. One is to study the global stability of the model by constructing

appropriate Lyapunov functions. Zhen and Ma (2002) provide sufficient con-

ditions for local and global stability of system (1) with four delays by means
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of Lyapunov factions. Saito (2002) presents the necessary and sufficient con-

ditions for the symmetric system (1) with α11 = α22 = α and α12 = α21 = β

by using Lyapunov functions. The other is to focus on linear stability of the

corresponding linearized system of (1) and to investigate the location of the

solutions in the complex plane. Shibata and Saito (1980) examine system (1)

with τ12 = τ21 = 0 and numerically exhibit the emergence of complex dynamics

as well as simple dynamics. On the other hand, Song et al. (2004) investigate

system (1) with τ11 = τ22 = 0 and show that a positive steady state is locally

asymptotically stable for any value of τ = τ12+τ21 > 0. These works imply that

the hunting delays are harmless and the maturation delays could be a source

of instability. Zhang et al. (2009) study the occurrence of Hopf bifurcation

and present the stability of limit cycles bifurcating from the Hopf bifurcation

in system (1) when τ11 = τ22 = τ12 = τ21 = τ > 0. Zhang (2012) is concerned

with system (1) with τ ii = τ and τ ij > 0 and obtains conditions under which

periodic solutions bifurcate from the positive steady state. Our study is closely

related to Zhang et al. (2009) and Zhang (2012). The similarity is that we

study the LV competition system (1) with multiple delays and the dissimilarity

is that the different roles of two distinct delays are considered by taking into

account the notion that the own feedback delay to the growth is different than

the cross feedback delay of the competitors. It is to be noticed that although

their models have multiple delays, they eventually make some simplifications

transforming their models to essentially a one-delay model.

The rest of the study is organized as follows. Section 2 reduces system (1)

to an analytically manageable LV competition system with two distinct delays.

Section 3 reviews a one-delay LV competition system. Section 4, the main part

of this study, derives the stability switching curve that divides the region of the

two delays into a stability and instability subregions. Section 5 performs some

numerical simulations to visualize the theoretical results obtained previously.

Finally, Section 6 concludes this study.

2 Lotka-Volterra Competition Model

First of all, we assume τ11 = τ21 = τx, τ22 = τ12 = τy and τx 6= τy in (1) and

reduce it to the following Lotka-Volterra competition system with two delays,

ẋ(t) = x(t) [ε1 − a11x(t− τx)− a12y(t− τy)]

ẏ(t) = y(t) [ε2 − a21x(t− τx)− a22y(t− τy)]

(2)

where the parameter specification implies that only matured species can hunt

their competitors.1 A stationary state of system (2) satisfies ẋ(t) = ẏ(t) = 0 for

1Xu et al (2011) consider a similar model in the predator-prey framework.
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any t ≥ 0 and is expressed by

xe =
ε1a22 − ε2a12

a11a22 − a12a21 ,

ye =
ε2a11 − ε1a21

a11a22 − a12a21 .
(3)

Both of xe and ye are positive if the following conditions are satisfied, which

can be mentioned as the intra-competition dominates the inter-competition,

Assumption 1.
a11

a21
>

ε1

ε2
>
a12

a22
.

To consider local stability of the stationary state, we linearize system (2) to

have the homogenous correspondence,

ẋ(t) = −αxx(t− τx)− βxy(t− τy)

ẏ(t) = −βyx(t− τx)− αyy(t− τy)

(4)

where the new or reduced coefficients are defined as

αx = a11x
∗, βx = a12x

∗ and βy = a21y
∗, αy = a22y∗. (5)

With the exponential solutions, x(t) = eλtu and y(t) = eλtv with u 6= 0 and

v 6= 0, the characteristic equation of system (4) is

det

⎛⎝ λ+ αxe
−λτx βxe

−λτy

βye
−λτx λ+ αye

−λτy

⎞⎠ = 0

or expanding the determinant, we have

P0(λ) + P1(λ)e
−λτx + P2(λ)e−λτy + P3(λ)e−λ(τx+τy) = 0 (6)

where

P0(λ) = λ2, P1(λ) = αxλ, P2(λ) = αyλ, P3(λ) = αxαy − βxβy.

The stability of the stationary state of system (2) depends on the locations of

the roots of the characteristic equation (6) on the complex plane. Although

it is well known, we establish the stability of the LV system with no delays,

τx = τy = 0, as a benchmark. In particular, equation (6) becomes

λ2 + (αx + αy)λ+
¡
αxαy − βxβy

¢
= 0. (7)

Since αx + αy > 0 and

αxαy − βxβy = (a11a22 − a12a21)x∗y∗ > 0
by Assumption 1 and the discriminant is positive, the characteristic roots are

real and negative, implying local stability.

Theorem 1 Given Assumption 1, the positive stationary point (xe, ye) of sys-

tem (2) with τx = τy = 0 is locally asymptotically stable.
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3 One-Delay Model

We briefly review the results obtained in a one-delay LV competition model in

which τx = τy = τ > 0 is assumed. This is essentially the same as Zhang et al.

(2009). The corresponding characteristic equation is

λ2 + (αx + αy)λe
−λτ +

¡
αxαy − βxβy

¢
e−2λτ = 0

or multiplying both sides by eλτ renders it to

λ2eλτ + (αx + αy)λ+
¡
αxαy − βxβy

¢
e−λτ = 0. (8)

Suppose that λ = iω with ω > 0 is a root of (8) for some τ . This solution

is substituted into (8) to obtain the following forms of the real and imaginary

parts £
ω2 − ¡αxαy − βxβy

¢¤
cosωτ = 0,

− £ω2 + ¡αxαy − βxβy
¢¤
sinωτ + (αx + αy)ω = 0.

(9)

If we assume ω2 =
¡
αxαy − βxβy

¢
from the first equation of (9), then the second

equation implies

sinωτ =
αx + αy

2
p
αxαy − βxβy

> 1

where the last inequality is due to

(αx + αy)
2 − 4 ¡αxαy − βxβy

¢
> 0 and ω =

q
αxαy − βxβy > 0

and contradicts |sinωτ | ≤ 1. Hence we have, from the first equation,

cosωτ = 0 and sinωτ = ±1.

When sinωτ = +1, the second equation,

ω2 − (αx + αy)ω +
¡
αxαy − βxβy

¢
= 0,

yields two positive solutions ,

ω± =
1

2

½
αx + αy ±

q
(αx + αy)

2 − 4 ¡αxαy − βxβy
¢¾

with 0 < ω− < ω+. When sinωτ = −1, then the second equation is reduced to

ω2 + (αx + αy)ω +
¡
αxαy − βxβy

¢
= 0.

Both roots are real and negative. Hence we have two critical values of the delay

0 < τ+,n =
1

ω+

³π
2
+ 2nπ

´
and τ−,n =

1

ω−

³π
2
+ 2nπ

´
for n = 0, 1, 2, ... .

(10)
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We can think of the roots of (8) as continuous functions in terms of the delay

τ and then determine the sign of the derivative of Re [dλ(τ)/dτ ] at the point

where λ(τ) is purely imaginary. Assuming αx = αy = α for analytical simplicity

and then differentiating the following form of the characteristic equation,

λ2 + 2αλe−λτ +
¡
α2 − βxβy

¢
e−2λτ = 0 (11)

yield©¡
λ+ αe−λτ

¢− τ
£
αλe−λτ +

¡
α2 − βxβy

¢
e−2λτ

¤ª dλ
dτ
= λ

£
αλe−λτ +

¡
α2 − βxβy

¢
e−2λτ

¤
.

For convenience, we study (dλ/dτ)
−1
instead of dλ/dτµ

dλ

dτ

¶−1
=

λ+ αe−λτ

λ
£
αλe−λτ +

¡
α2 − βxβy

¢
e−2λτ

¤ − τ

λ

= − 1
λ2
− τ

λ

where equation (11) is used in the last step. Inserting λ = iω where ω = ω+ or

ω = ω− and taking the real part present

Re

"µ
dλ

dτ

¶−1
λ=iω

#
= Re

∙
− 1

(iω)2
− τ

iω

¸
=
1

ω2
> 0.

The last inequality implies that the crossing of the imaginary axis is from left

to right as τ is increasing and the stability of the steady state is lost. Stability

cannot be regained science at each critical value at least one pair of eigenvalues

changes real part from negative to positive. Summarizing these results present

the following.

Theorem 2 (Theorem 2.5 of Zhang et al. (2009)) The steady state of system

(2) with τx = τy = τ is locally asymptotically stable for τ < τ+,0, loses stability

at τ = τ+,0 and bifurcates to a limit cycle for τ > τ+,0 where τ+,0 is the smallest

critical value of τ and defined as

τ+,0 =
π

2ω+
.

4 Two Delay Model

We now suppose τx > 0 and τy > 0 and consider how the positive delays affect

stability of system (2). We can see that λ = 0 does not solve the characteristic

equation and thus find all purely complex roots. To this end, we assume that

λ = iω with ω > 0. Substituting it into the characteristic equation gives

P0(iω) + P1(iω)e
−iωτx + P2(iω)e−iωτy + P3(iω)e−iω(τx+τy) = 0 (12)
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with

P0(iω) = −ω2, P1(iω) = iαxω, P2(iω) = iαyω, P3(iω) = αxαy − βxβy. (13)

Applying the method developed by Matsumoto and Szidarovszky (2018) that

is based on Lin and Wang (2012), we derive the set of points (τx, τy) for which

the delay system (2) has purely complex roots. Equation (12) is written as

P0(iω) + P1(iω)e
−iωτx +

£
P2(iω) + P3(iω)e

−iωτx¤ e−iωτy = 0. (14)

Since
¯̄
e−iωτy

¯̄
= 1, equation (14) has solution for τx if and only if¯̄
P0(iω) + P1(iω)e

−iωτx ¯̄ = ¯̄P2(iω) + P3(iω)e−iωτx ¯̄
or squaring both sides presents the equivalent form,¡

P0(iω) + P1(iω)e
−iωτx¢ ¡P̄0(iω) + P̄1(iω)eiωτx¢

=
¡
P2(iω) + P3(iω)e

−iωτx¢ ¡P̄2(iω) + P̄3(iω)eiωτx¢
where over-bar indicates complex conjugate. After some calculations, the last

equation can be reduced to

|P0|2 + |P1|2 − |P2|2 − |P0|2 = 2Ax(ω) cosωτx − 2Bx(ω) sinωτx. (15)

where the argument of Pi is omitted for the sake of notational simplicity and

Ax(ω) = Re
¡
P2P̄3 − P0P̄1

¢
and Bx(ω) = Im

¡
P2P̄3 − P0P̄1

¢
.

Using Pk(iω) for k = 0, 1, 2, 3 in (13), we obtain

P2P̄3 − P0P̄1 = iω
£
αy
¡
αxαy − βxβy

¢− αxω
2
¤

which implies

Ax(ω) = 0

and

Bx(ω) = αxω

∙
αy

αx

¡
αxαy − βxβy

¢− ω2
¸
. (16)

Thus equation (15) is reduced to

|P0|2 + |P1|2 − |P2|2 − |P3|2 = −2Bx(ω) sinωτx (17)

To find an appropriate pair of τx and τy satisfying equation (14), we first ex-

amine the case of Bx(ω) = 0 and then proceed to the case of Bx(ω) 6= 0.
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4.1 Case 1: Bx(ω) = 0

Let ωx be a positive solution of Bx(ω) = 0 that makes the right hand side of

(17) zero,

ω2x =
αy

αx

¡
αxαy − βxβy

¢
> 0

where the inequality is due to Assumption 1. Also let f(ω) be the left hand side

of equation (17). Substituting Pk(iω) for k = 0, 1, 2, 3 into f(ω) and rearranging

terms, we obtain

f(ω) = ω4 + (α2x − α2y)ω
2 − ¡αxαy − βxβy

¢2
.

Solving f(ω) = 0 yields two solutions,

ω2± =
1

2

∙
−(α2x − α2y)±

q
(α2x − α2y)

2 + 4
¡
αxαy − βxβy

¢2¸
.

Comparing ω2x with ω2+ reveals that both solutions are identical if αx = αy.

There is no solution of τx for equation (17) if αx 6= αy because f(ωx) 6= 0 and
Bx(ω+) 6= 0. Only for the sake of analytical simplicity, we make a little bit

stronger conditions;

Assumption 2. αx = αy = α and βx = βy = β.

Under Assumption 2, we have

ω2x = ω2+ = α2 − β2 > 0.

Let ω∗ be the positive solution of the last equation,

ω∗ (= ωx = ω+) =

q
α2 − β2 > 0.

With this identical assumption, f(ω) = 0 and Bx(ω) = 0 for ω = ω∗, that
is, equation (17) holds. The corresponding values of τy can be obtained from

equation (14)

e−iωτy = −P0(iω) + P1(iω)e
−iωτx

P2(iω) + P3(iω)e−iωτx
. (18)

An explicit form of τy against τx ≥ 0 is derived as follows. Using Euler’s
formula, equation (18) can be rewritten as

cosωτy − i sinωτy = − −ω2 + αω sinωτx + iαω cosωτx¡
α2 − β2

¢
cosωτx + i

£
αω − ¡α2 − β2

¢
sinωτx

¤ . (19)

For simplification of the right hand side, we multiply the denominator and the

numerator of (19) by the conjugate of the denominator. Then the denominator

becomes

Dx =
£¡
α2 − β2

¢
cosωτx

¤2
+
£
αω − ¡α2 − β2

¢
sinωτx

¤2
> 0.
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The new numerator can be denoted by Mx + iNx where the real part is

Mx = β2ω2 cosωτx (20)

and the imaginary part is

Nx = αω
¡
α2 − β2

¢
+ αω3 − ω2

¡
2α2 − β2

¢
sinωτx. (21)

Replacing ω with ω∗ and comparing the left hand side of (19) with −Mx/Dx +

i (Nx/Dx) yield

cosω∗τy = −Mx

Dx
and sinω∗τy =

Nx

Dx
.

For further development, we need to specify parameter values so that we take

the following specification adopted by Shibata and Saito (1980);

Specification I: a11 = a22 = 2, a12 = a21 = 1 and ε1 = ε2 = 2.

Using (3) and (5) with this specification, we have the following values for

the reduced parameters,

αx = αy = α =
4

3
, βx = βy = β =

2

3
and (ω∗)2 =

4

3
.

The graphs of −Mx/Dx and Nx/Dx are illustrated as red and blue curves

for τx ∈ (0, 2π/ω∗) in Figure 1. The red curve intersects the horizontal axis
twice at which Mx = 0 or cosω

∗τx = 0 from (20). Hence we have ω∗τx = π/2

at point B and ω∗τx = 3π/2 at point D,

τBx =
π

2ω∗
' 1.36 and τDx =

3π

2ω∗
' 4.08.

It is also seen that the blue curve intersects the horizontal axis twice at which

Nx = 0 from (21) or

sinω∗τx =
2α
¡
α2 − β2

¢p
α2 − β2

¡
2α2 − β2

¢ = 4
√
3

7
' 0.9897 < 1.

Since points A and C are left, respectively, right to point B and sinω∗τx takes
the maximum value +1 at point B with ω∗τBx = π/2, we have ω∗τAx < π/2 at

point A at which cosω∗τAx > 0 and ω
∗τCx > π/2 at point C at which cosω∗τCx <

0. Hence

τAx =
1

ω∗
sin−1

Ã
4
√
3

7

!
' 1.24

and

τCx =
1

ω∗

"
π − sin−1

Ã
4
√
3

7

!#
' 1.48.
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Figure 1. Graphs of Mx/Dx (red) and Nx/Dx (blue).

The interval [0, 2π/ω∗] is divided into five subintervals. In the first subin-
terval (0, τAx ), it is seen that cosω

∗τy < 0 and sinω∗τy > 0. Hence solving

cosω∗τy = −Mx/Dx and sinω
∗τy = Nx/Dx for τy determines the correspond-

ing values of τy satisfying equation (18),

τ cy(τx) =
1

ω∗
cos−1

µ
−Mx

Dx

¶
and τ sy(τx) =

1

ω∗

∙
π − sin−1

µ
Nx

Dx

¶¸
(22)

where the superscripts c and s stand for cos and sin, respectively. In the same

way, we have cosω∗τy < 0 and sinω∗τy < 0 for τx ∈
¡
τAx , τ

B
x

¢
in which

τ cy(τx) =
1

ω∗

∙
2π − cos−1

µ
−Mx

Dx

¶¸
and τsy(τx) =

1

ω∗

∙
π − sin−1

µ
Nx

Dx

¶¸
.

(23)

For τx ∈
¡
τBx , τ

C
x

¢
, cosω∗τy > 0 and sinω∗τy < 0 imply

τ cy(τx) =
1

ω∗

∙
2π − cos−1

µ
−Mx

Dx

¶¸
and τ sy(τx) =

1

ω∗

∙
2π + sin−1

µ
Nx

Dx

¶¸
.

(24)

For τx ∈
¡
τCx , τ

D
x

¢
, cosω∗τy > 0 and sinω∗τy > 0 imply

τ cy(τx) =
1

ω∗
cos−1

µ
−Mx

Dx

¶
and τ sy(τx) =

1

ω∗
sin−1

µ
Nx

Dx

¶
. (25)

Finally, we have cosω∗τy < 0 and sinω∗τy > 0 for τx ∈
¡
τDx , 2π/ω

∗¢ as in the
first subinterval,

τ cy(τx) =
1

ω∗
cos−1

µ
−Mx

Dx

¶
and τ sy(τx) =

1

ω∗

∙
π − sin−1

µ
Nx

Dx

¶¸
. (26)
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Since τ cy(τx) = τsy(τx) holds for τx ∈ [0, 2π/ω∗], the solution can be denoted by
τy(τx).

The locus of (τx, τy(τx)) for τx ∈ [0, 2π/ω∗] constructs the crossing curves
in case of Bx(ω) = 0 that are illustrated by two black-red curves in Figure 2.

More precisely, the upper convex-shaped curve consists of three segments, the

lowest black segment described by (22), the middle red segment by (23) and the

highest black segment by (24) whereas the lower concave-shaped curve consists

of two segments, the left black segment by (25) and the right red segments by

(26). Because of the trigonometric representations, there are infinitely many

values of τy(τx), we only represent the smallest solutions. The results obtained

so far are summarized as follows:

Theorem 3 If Bx(ω) = 0 for ω = ω∗, αx = αy = α, βx = βy = β and α > β,

then the crossing curve is described by the locus of (τx, τy(τx)) where

τy(τx) =
1

ω∗
cos−1

µ
−Mx

Dx

¶
for τx ∈ (0, τAx ) ∪

¡
τCx , τ

D
x

¢ ∪ ¡τDx , 2π/ω∗¢
and

τy(τx) =
1

ω∗

∙
2π − cos−1

µ
−Mx

Dx

¶¸
for τx ∈

¡
τAx , τ

B
x

¢ ∪ ¡τBx , τCx ¢
where

ω∗ =
q
α2 − β2 > 0.

Figure 2. Crossing curves in case of Bx(ω) = 0

4.2 Case 2: |Bx(ω)| > 0
In this section we consider the case of ω 6= ω∗. We determine values of τx
satisfying equation (14) in the first half and then values of τy in the second half.
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Since equation (16) can be rewritten as

Bx(ω) = αxω (ωx + ω) (ωx − ω)

with

ωx =

r
αy

αx

¡
αxαy − βxβy

¢
,

there exists ϕx(ω) such that

ϕx(ω) = arg
£
P2P̄3 − P0P̄1

¤
=

⎧⎪⎪⎨⎪⎪⎩
π

2
if Bx(ω) > 0 or ω < ωx,

3π

2
if Bx(ω) < 0 or ω > ωx,

implying that

sin [ϕx(ω)] =
Bx(ω)p
Bx(ω)2

= 1 and cos [ϕx(ω)] =
Ax(ω)p
Bx(ω)2

= 0.

Rewriting the first equation as Bx(ω) =
p
Bx(ω)2 sin [ϕx(ω)] and applying the

addition theorem, equation (17) can be reduced to

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2
p
Bx(ω)2 cos [ϕx(ω) + ωτx] (27)

where the following relation with cos [ϕx(ω)] = 0 is used,

− sin [ϕx(ω)] cosωτx = cos [ϕx(ω)] sinωτx − sin [ϕx(ω)] cosωτx.
Rewriting equation (27) presents

|P0|2 + |P1|2 − |P2|2 − |P3|2
2
p
Bx(ω)2

= cos [ϕx(ω) + ωτx] ≤ 1.

Hence a sufficient and necessary condition for the existence of τx > 0 satisfying

the above equation is¯̄̄
|P0|2 + |P1|2 − |P2|2 − |P3|2

¯̄̄
≤ 2

p
Bx(ω)2

or

F (ω) =
¯̄̄
|P0|2 + |P1|2 − |P2|2 − |P3|2

¯̄̄2
− 4Bx(ω)2 ≤ 0.

Substituting Pk(iω) for k = 0, 1, 2, 3 in (13) into the right hand side of F (ω) gives

F (ω) = ω8 + a6ω
6 + a4ω

4 + a2ω
2 + a0 (28)

where
a6 = −4(α2x + α2y),

a4 = (α
2
x − α2y)

2 + 2
¡
3αxαy + βxβy

¢ ¡
αxαy − βxβy

¢
,

a2 = −2(α2x + α2y)
¡
αxαy − βxβy

¢2
,

a0 =
¡
αxαy − βxβy

¢4
.
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With x = ω2, the right hand side of equation (28) can be factorized as

x4 + a6x
3 + a4x

2 + a2x+ a0 = F1(x) · F2(x)

where F1(x) and F2(x) are quadratic in x,

F1(x) = x
2 − ¡α2x + α2y + 2βxβy

¢
x+

¡
αxαy − βxβy

¢2
and

F2(x) = x
2 − ¡α2x + α2y − 2βxβy

¢
x+

¡
αxαy − βxβy

¢2
.

Solving F1(x) = 0 gives two real roots,

x1 =
1

2

∙
α2x + α2y + 2βxβy − (αx + αy)

q
(αx − αy)

2
+ 4βxβy

¸

x2 =
1

2

∙
α2x + α2y + 2βxβy + (αx + αy)

q
(αx − αy)

2
+ 4βxβy

¸
and solving F2(x) = 0 gives two real roots,

x3 =
1

2

∙
α2x + α2y − 2βxβy − (αx − αy)

q
(αx + αy)

2 − 4βxβy
¸

x4 =
1

2

∙
α2x + α2y − 2βxβy + (αx − αy)

q
(αx + αy)

2 − 4βxβy
¸

since the discriminant is positive,

(αx + αy)
2 − 4βxβy = (αx − αy)

2
+ 4

¡
αxαy − βxβy

¢
> 0.

If αx = αy, then the second term in the last two square brackets are zero,

implying that F2(x) = 0 generates equal roots,

x1 < x2 and x3 = x4.

If αx > αy, then all roots are real and distinct and it is clear that

x1 < x2 and x3 < x4.

If the inequality is reversed, then the subscripts of x3 and x4 should be in-

terchanged but there is essentially no harm. So we adopt αx > αy in the

asymmetric case. Further, subtracting F1(x) from F2(x) presents

F2(x)− F1(x) = 4βxβyx > 0 for x > 0.

This inequality implies the following ordering among real roots if αx ≥ αy,

x1 < x3 ≤ x4 < x2.

Let ωi be a positive solution of xi = ω2, then
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0 < ω1 < ω3 ≤ ω4 < ω2.

Therefore we have the interval union [ω1,ω3] ∪ [ω4,ω2] that is denoted by Ω in
which F (ω) ≤ 0.
Let us define ψx(ω) by

|P0|2 + |P1|2 − |P2|2 − |P0|2 = 2
p
Bx(ω)2 cos [ψx(ω)] (29)

or

ψx(ω) = cos
−1
"
|P0|2 + |P1|2 − |P2|2 − |P3|2

2
p
Bx(ω)2

#
.

Comparing the right hand side of (27) with that of (29) presents the critical

values of delay τx,

τ±x,m(ω) =
1

ω
[±ψx(ω)− ϕx(ω) + 2mπ] for m = 0, 1, 2, ... . (30)

To determine the corresponding values of delay τy, we return to equation

(12) and alternatively put it as

P0(iω) + P2(iω)e
−iωτy +

£
P1(iω) + P3(iω)e

−iωτy¤ e−iωτx = 0. (31)

Similarity of (31) to (14) is clear. Hence, in the same way, we can define the

critical value of τy as

τ±y,n(ω) =
1

ω

£±ψy(ω)− ϕy(ω) + 2nπ
¤
for n = 0, 1, 2, ..., (32)

where

Ay(ω) = Re
£
P1P̄3 − P0P̄2

¤
= 0,

By(ω) = Im
£
P1P̄3 − P0P̄2

¤
= αyω

∙
αx

αy

¡
αxαy − βxβy

¢− ω2
¸
,

ψy(ω) = cos
−1
"
|P0|2 − |P1|2 + |P2|2 − |P3|2

2
p
By(ω)2

#
and

ϕy(ω) = arg
£
P1P̄3 − P0P̄2

¤
=

⎧⎪⎪⎨⎪⎪⎩
π

2
if By(ω) > 0 of ω < ωy,

3π

2
if By(ω) < 0 of ω > ωy

with ωy being a positive solution of By(ω) = 0,

ωy =

r
αx

αy

¡
αxαy − βxβy

¢
.

14



In case of By(ω) = 0, we solve (31) to have

e−iωτx = −P0(iω) + P2(iω)e
−iωτy

P1(iω) + P3(iω)e−iωτy
. (33)

Two remarks should be addressed. First, in the same way as to derive τy(τx)

from equation (14), we can derive τx(τy) from equation (31) and construct

the crossing curve (τx(τy), τy). Second, equations (14) and (31) are different

expressions derived from the same characteristic equation (12). As a result the

crossing curve (τx, τy(τx)) is identical with the crossing curve (τx(τy), τy). To

define ψy(ω), we need a condition similar to F (ω),

G(ω) =
¯̄̄
|P0|2 − |P1|2 + |P2|2 − |P3|2

¯̄̄2
− 4By(ω)2 ≤ 0.

Since it can be shown that F (ω) = G(ω), the solutions of F (ω) = 0 also solve

G(ω) = 0, although a solution of Bx(ω) = 0 is different from a solution of

By(ω) = 0,

ω2x < ω2y if αx > αy.

In Figure 4(A), the crossing curve under Assumption 2 and Specification 1

is illustrated as an egg-shaped closed curve and the parts of the crossing curve

in case of Bx(ω) = 0 are over-illustrated. Under these parameter specification,

the blue and red segments are described, respectively, by¡
τ+x,0(ω), τ

−
y,1(ω)

¢
for ω ∈ [ω1,ω3]

and ¡
τ−x,1(ω), τ

+
y,0(ω)

¢
for ω ∈ [ω1,ω3]

with

ϕx(ω) = ϕy(ω) =
π

2

whereas the green and orange curves are described by¡
τ+x,1(ω), τ

−
y,1(ω)

¢
for ω ∈ [ω4,ω2]

and ¡
τ−x,1(ω), τ

+
y,1(ω)

¢
for ω ∈ [ω4,ω2]

with

ϕx(ω) = ϕy(ω) =
3π

2
.

At the origin of τx = τy = 0, the stationary state is confirmed to be locally

asymptotically stable. Hence in Figure 4(A), the region including the origin and

being surrounded by the black, orange and blue segments is the stability region.

Further its boundary is the stability switching curve on which the real part of

an eigenvalues are zero. Equations (30) and (32) indicate that increasing values

of m and n increase the values of τ±x (ω) and τ±y (ω), respectively. Graphically,
this implies that increasing value of m shifts the closed curve rightward and
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increasing value of n shifts the closed curve upward. Hence, it can be mentioned

that m is a horizontal-shift parameter and n is a vertical-shift parameter.

We turn attention to the asymmetric case in which we take the following

parameter specification where only the value of a22 is increased to 5/2.

Specification II: a11 = 2, α22 = 5/2, a12 = α21 = 1 and ε1 = ε2 = 2

It can be checked that given Specification 2, the reduced parameters take

the following values,

αx =
3

2
> αy =

5

4
, βx =

3

4
and βy =

1

2
.

The crossing curves in case of αx > αy are illustrated in Figure 4(B). Although

ωx < ωy, we have

ω3 < ωx < ωy < ω4

since substituting ωx and ωy into F2(x) yields

F2(ωx) = −
(αx − αy)

2βxβy
¡
αxαy − βxβy

¢
α2x

< 0

and

F2(ωy) = −
(αx − αy)

2βxβy
¡
αxαy − βxβy

¢
α2y

< 0.

The fact that F2(x) is quadratic with F (ω3) = F (ω4) = 0 implies the above

inequality relation. Hence

Bx(ω) > 0 and By(ω) > 0 for ω ∈ (ω1,ω3) implying ϕx(ω) = ϕy(ω) =
π

2

and

Bx(ω) < 0 and By(ω) < 0 for ω ∈ (ω4,ω2) implying ϕx(ω) = ϕy(ω) =
3π

2
.

Applying the same procedure to obtain the egg-shaped crossing curve, we can

derive the crossing curve in Figure 4(B) under the following parameter specifi-

cation. Two notices are given: First, the case of Bx(ω) = By(ω) = 0 does not

occur when αx > αy; second, the shape of the crossing curves are distorted. The

stationary state is locally asymptotically stable in the region including the origin

and being surrounded by the blue, orange and green curves. The boundary of

this region is the stability switching curve in case of αx > αy.
2 We refer to the

two horizontal dotted lines in each figure shortly when we perform numerical

simulations. The results obtained so far are summarized as follows:

2 Interchanging the horizontal and vertical axes gives the stability switching curve for αx =

5/4 < αy = 3/2, βx = 1/2 and βy = 3/4.
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Theorem 4 Given Assumption 2 and if Bx(ω) 6= 0 and By(ω) 6= 0, then the

pairs of delays obtained from (30) and (32) as©¡
τ±x,m(ω), τ

∓
y,n(ω)

¢ | ω ∈ Ωª ,
give the set of all crossing curves on the (τx, τy) plane for equations (2).

(A) αx = αy (B) αx > αy

Figure 3. Stability switching curves with Bj(ω) 6= 0 for j = x, y

5 Numerical Simulations

We numerically confirm the analytical results obtained so far by simulating

system (2) with Specification I or II. Initial functions are assumed to be constant,

ϕx(t) = x
e + x0 and ϕy(t) = y

e + y0 for t ≤ 0 (34)

where xe and ye are the steady state obtained in (3), x0 and y0 are some

constants.

In the first example with x0 = y0 = 0.01, we perform simulations of the

one-delay model discussed in Section 3, that is, (2) with τx = τy = τ , as a

special case of the two-delay model. Delay τ is increased along the diagonal of

Figure 3(A) that passes through the connecting point of the orange and green

segments. According to Theorem 2, the stability is lost at the critical value of

the delay that is obtained from (10) with n = 0 as

τ+,0 =
π

4
' 0.775.
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Since the point is also on the stability switching curve, the critical value can be

obtained from Theorem 6,3

τ−x,1(ω3) = τ+y,1(ω3) =
π

4
at point c.

Needless to say, both values are the same and thus denoted as τ∗. Theorem 2

predicts that the steady state is locally asymptotically stable for τ < τ∗ and loses
stability at point c from which a limit cycle emerges and becomes larger as the

value of τ increases. More specifically, Figure 4(A) is a bifurcation diagram with

respect to τ representing a locus of (τx, y(t)) under Specification I.
4 As is seen

in Figure 4(A), the lower part of the diagram after the second bifurcation point

τA ' 1.057 is compressed and almost invisible.5 To avoid this inconvenience,

Figure 4(B) reproduces the same diagram in the (τx, log x(t)) plane in which a

period-doubling cascade is clearly seen.

(A) y(t) (B) log y(t)

Figure 4. Bifurcation diagrams of the one-delay model with τx = τy = τ

A close look at these diagrams reveals two points that the analytical results

do not refer to: one is that a time trajectory could be negative or its amplitude

becomes extremely large, implying loss of biological meaning and the other is the

occurrence of multistability over a small interval of τ in which a stable steady

3 In the same way we have

τ−,0 =
3π

4
' 2.36

and at point c0

τ+x,0(ω4) = τ−y,1(ω4) =
3π

4
.

4The diagram is constructed in the following procedure. The value of τ is increased from

π/4− 0.1 to 8/5 with an increment 0.001. For each value of τ , system runs for 0 ≤ t ≤ T =

1000 and the data for t ≤ T − 50 are discarded to get rid of the initial disturbance. The
remaining data are plotted against this τ value. The value of τ is increased and then the same

procedured is repeated until τ arrives at 8/5.
5The value of τA is a rough estimate.
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state and a limit cycle coexist. Figure 5(A) enlarges the vicinity of the second

bifurcation point of the diagram of Figure 4(A). For τ in interval [τm, τM ] with

τm = 1.05 and τM = 1.085, the blue curve is obtained with different initial

functions φx(t) = xe + 0.1 and φy(t) = ye + 3 and the red diagram with (34)

is superposed on the blue one. It is seen that both trajectories are identical for

τ < τA, the blue curve bifurcates to a periodic cycle for τ > τA while along

the red curve, the steady state is still stable for τ > τA but to a limited extent,

and then jumps to a periodic solution around τ = τB ' 1.069. After that, the
red curve is again identical with the blue one. We take τ = τB and obtain the

phase diagram in Figure 5(B). The blue curve depicts a periodic solution and

takes a two-fold widely extended oval shape. The red curve describes a periodic

solution with a very long period. Summarizing the results, the one-delay model

most likely generates periodic solutions after loss of stability.

(A) Enlargement (B) Orbits with τ = τB

Figure 5. Multistability over [τA,τB]

We now draw attention to the delay effects caused by two positive delays. In

the second example, we simulate system (2) with Specification I in the following

way. The value of τy is fixed at 8/5 and the value of τx is increased from 0 to 8/5.

Applying a similar procedure than in the first example, we have the bifurcation

diagram of x(t) with respect to τx as illustrated in Figure 6. Graphically τx
increases along the upper dotted line at τy = 8/5 in Figure 3(A) in which the

dotted line crosses the stability switching curve twice at point a on the upper

black segment and at point b on the orange segment where the abscissas of these

points are

τax ' 0.536 and τ bx ' 0.814.
In the interval [0, τax), the stationary state is locally unstable because the dot-

ted line is in the unstable region above the black boundary. It is seen in the

bifurcation diagram shown in Figure 6(A) that the unstable stationary state is

replaced with a limit cycle. Stability is gained in the interval (τax, τ
b
x) since the

dotted line segment ab is in the stable region. At point b, the stationary state
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loses stability again and then undergoes a period-doubling bifurcation to com-

plex dynamics involving chaos as τx increases and further increasing the values

of τx induces a period-halving bifurcation. Figure 6(B) plots (τx, log x(t)) in

order to clarify dynamic behavior of the lower parts of the bifurcation diagram

in the interval (τ bx, 8/5),which is again compressed and thus almost invisible in

Figure 6(A). The period-doubling and the period-halving cascades in the lower

part are clearly seen in Figure 6(B).

(A) x(t) (B) logx(t)

Figure 6. Bifurcation diagrams of x(t) and log x(t) with respect to τx

In the third simulation, the fixed value of τy is decreased to π/4 and τx is

increased along the lower horizontal dotted line at τy = π/4 of Figure 3(A). In

Figure 3(A), the horizontal line crosses the stability switching curve three times

at points c, d and e where the abscissas are

τ cx ' 0.772, τdx ' 1.560 and τex ' 1.726.

Multiple stability losses and gains occur in Figure 7(A). The stationary state is

stable in the intervals (0, τ cx) and (τ
d
x, τ

e
x). On the other hand, it is unstable in

(τ cx, τ
d
x) and for τx > τex, periodic cycles with various periodicity are created.

To see what dynamic comes out for τ > τex, we take τ
1
x = 1.9 with τy = π/4

and perform simulation to obtain the phase diagram shown in Figure 7(B) in

which the steeper line is the ẋ(t) = 0 locus and the flatter line is the ẏ(t) = 0

locus. As expected, a periodic solution with larger periodicity oscillates around
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the steady state S.

(A) Bifurcation diagram (B) Phase diagram

Figure 7. Birth if varuiys periodic solutions

In the fourth example, we simulate the model with Specification II. The

horizontal line at τy = 8/5 in Figure 3(B) crosses the stability switching curve

twice at point a with τax ' 0.331 and point b with τ bx ' 0.906. Comparing the
resultant bifurcation diagram in Figure 8(A) with that in Figure 6(A) seems to

give rise no big qualitative difference. We incline to mention that the differences

in parameter specification do not generate any qualitatively different results.

However, to look more carefully at the diagrams in a small neighborhood of τ bx
brings us to find that the diagrammakes a jump at τ = τ bx. To see what dynamics

emerges there, we enlarge that part and obtain the bifurcation diagram over

interval [τ bx−0.01, τ bx+0.01] presented in Figure 8(B) in which two occurrences
of multistabily are observed. The blue curve has initial functions, ϕx(t) = x

e and

ϕy(t) = y
e+3 whereas the red curve has ϕx(t) = x

e+0.01 and ϕy(t) = y
e+0.01.

In interval [τmx , τ
b
x] with τmx ' 0.9008, the stable state coexists with a periodic

solution. Further, for τx > τ bx, the coexistence of periodic cycles with different

periodicity is observed, which is similar to that given in Figure 5(A). Notice that

the same phenomenon occurs along the lower branch of the bifurcation diagram

of Figure 8(B) but is invisible. Under Specification II, numerical considerations

confirm the theoretical results and show what the theoretical results do not
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predict.

(A) x(t) (B) Enlargement

Figure 8. Bifurcation diagram with a11 < a22

In the fifth example, we decrease the value of τy to π/4 and simulate the

model, increasing the value of τx along the lower dotted line of Figure 3(B)

from 0 to 2.7. The steady state loses stability when the dotted line crosses the

stability switching curve at τ cx = π/4 and bifurcates to a periodic solution. A

two-period cycle emerges for τ ∈ (τ cx, τ1x) with τ1x ' 1.91 and bifurcates to a

periodic cycle with multiple periods for τ > τ1x. The vertical line at τ
3
x ' 2.56

in Figure 9(A) crosses the bifurcation diagrams many times. Accordingly, the

closed orbit in Figure 9(B) oscillates around the steady state value of log[y(t)]

many time.

(A) (B)

Figure 9. Bifurcation diagrams
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6 Concluding Remarks

In this study, we analytically and numerically investigate a Lotka-Volterra com-

petition system with two delays, a maturation delay and a hunting delay. We

first review the well-known results that without delays, two competition species

can coexist if the intra-competition dominates the inter-competition. Under

this stability condition, we introduce delays to consider how the delays affect

the otherwise stable system, to be more specific, to validate whether the de-

lays cause the loss of stability and induces various oscillations. To this end, we

study the model in which the length of the maturation delay is identical with

that of the identical delay. It is shown that there is a critical value of the delay

and the steady state is locally asymptotically stable for a smaller delay, it loses

stability at the critical value and it is replaced with a limit cycle through a

Hopf bifurcation for a larger delay. For the model with two distinct delays, we

establish the analytical formula for constructing the stability switching curve

in the delay space, on which stability of the steady state is lost. Lastly we

perform simulations to verify what the analytical results predict. In particular,

it is demonstrated that the competing system can generate a wide variety of

dynamics ranging from periodic solution with various periods to complex dy-

namics involving chaos. It is further demonstrated what the analytical results

do not predict, that is, occurrence of multistability in which the stable steady

state coexists with periodic solutions, appearance of chaos via period-doubling

bifurcation and disappearance of chaos via period-halving bifurcation.
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