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Abstract

This study demonstrates the conditions under which an increase in the ambient charge
positively or negatively a¤ects the total level of non-point source pollutions. For this purpose,
an n-�rm Bertrand framework is used in which goods are di¤erentiated and the corresponding
price functions are linear. It is shown �rst that the e¤ect is de�nitely negative in duopoly and
triopoly and second that, for n � 4; the sign of the e¤ect depends on the number of the �rms
involved and the degree of substitutability.
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1 Introduction

Concerning non-point source (NPS) pollution, the regulator can measure the ambient concentra-
tion of pollutants, knows all potential polluters involved in emissions, however, is unable to identity
individual contributions to the total pollution. It could be very di¢ cult or costly to monitor at
the point of origin as well as to measure the individual emissions with su¢ cient accuracy. In
consequence of the informational asymmetries between the regulator and the polluters, traditional
environmental policy instruments such as emission taxes or tradable quotas cannot be used to reg-
ulate NPS pollution. An ambient charge or tax, advocated by Segerson (1988), is an environmental
policy instrument designed to link with observation of NPS pollution. The regulator announces the
charge or tax and a cut-o¤ level of ambient concentration. If the deviation between the observed
level and the cut-o¤ level is positive, then all potential polluters pay a tax proportional to the
deviation. If negative, then they receive a subsidy of a �xed proportion of the deviation. This
study focuses attention on whether the ambient charge scheme can control NPS pollution under
imperfect competition.
In a Cournot framework, it has been demonstrated that an increase of the ambient charge

decreases the total level of NPS pollution, which will be called a "good-natured" e¤ect. See Raju
and Ganguli (2012) for a duopoly case and Matsumoto et al. (2017a) for an n-�rm case. This
�nding indicates that environmental policy such as the ambient charge can control NPS pollutions
in a Cournot market or industry. Furthermore, Ganguli and Raju (2013) study the ambient charge
e¤ect in a Bertrand duopoly and numerically exhibit a "perverse" e¤ect that an increase in the
ambient charge may lead to larger NPS pollutions in ála Cournot market. On the other hand,
Matsumoto et al. (2017b) analytically show an opposite result in the same duopoly setting that a
higher charge can decrease the total level of pollutions. In the existing literature, however, it has
not been revealed yet whether the ambient charge can be e¤ective in a n-�rm Bertrand market.
The main purpose of this study is to demonstrate the economic circumstances under which the

ambient charge e¤ect can be good-natured or perverse. As in the standard literature, we employ a
n-�rm linear model with product di¤erentiation. Despite the simplicity, however, it is not easy to
determine the direction of the e¤ect because derivatives of the total pollution level with respect to
the ambient charge have cumbersome forms. In order to deal with this di¢ culty, we introduce a
special function in parameters expressing the e¢ ciency of the abatement technology of each �rm.
We then demonstrate the conditions under which the ambient charge e¤ect is positive or negative.
In particular, the followings are the main results:

(1) the e¤ect is negative in duopoly and triopoly

(2) in the Bertrand market, the sign of the e¤ect depends on the number of the �rms involved and
the degree of substitutability in oligopoly with n � 4:

In what follows, we introduce a basic model in Section 2 and discuss our main results in Section
3. Concluding remarks are given in Section 4.

2 The model

The direct demand function of �rm k is

qk = a� pk + 

X
i 6=k

pi for k = 1; 2; :::; n; (1)
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where a > 0 and 
 is a parameter measuring substitutability between good k and other goods.
Goods are supposed to be homogenous or perfectly substitutes if 
 = 1 and independent if 
 = 0: To
get rid of these two extreme cases, we impose the following condition.

Assumption 1. 0 < 
 < 1:

The pro�t function of �rm k is

�k = pkqk � cqk � t

0@�kqk +X
i 6=k

�iqi � �E

1A (2)

where c > 0 is the identical marginal cost of production, �k is pollution abatement technology for
�rm k. It is assumed that 0 � �k � 1 where �k = 1 means that �rm k has the worst technology
and discharges 100% pollution associated with its production and �k = 0 means that it has the best
technology and discharges no (0%) pollution. In addition, t is the ambient charge with 0 � t � 1
and �E is the ambient standard level, both are exogenously determined by the regulator. The total
level of pollution E generated by all �rms is given by

E =
nX
i=1

�iqi:

According to the spirit of the ambient charge, although each �rm�s emission is di¤erent, each �rm
will pay the same �ne t

�
E � �E

�
if E� �E > 0 and receive the same subsidy t

�
�E � E

�
if E� �E < 0.

Substituting (1) into (2) presents the pro�t in terms of prices,

�k = (pk � c)

0@a� pk + 
X
i 6=k

pi

1A�t
24�k

0@a� pk + 
X
i 6=k

pi

1A+X
i 6=k

�i

0@a� pi + 
X
j 6=i

pj

1A� �E

35 :
(3)

Di¤erentiating (3) with respect to pk and assuming an interior solution yields the �rst order condi-
tion for the pro�t-maximizing �rm k for k = 1; 2; :::; n;

d�k
dpk

= a+ c� 2pk + 

X
i 6=k

pi + t

24�k � 
X
i 6=k

�i

35 = 0
which can be rewritten as

2pk � 

X
i 6=k

pi = a+ c+ t

24�k � 
X
i 6=k

�i

35 : (4)

The FOCs for all �rms are summarized in vector form,

Bp = A

where, for i; j = 1; 2; :::; n;

B = (Bij)(n;n) with Bii = 2 and Bij = �
 (i 6= j)
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and

p = (pk)(n;1) and A =

0@a+ c+ t
24�k � 
X

i 6=k
�i

351A
(n;1)

:

Here we assume the following, otherwise jBj = 0 and we lose invertibility of matrix B.

Assumption 2. 
 6= 2

n� 1

Under Assumption 2, the Bertrand price vector is given by

p = B�1A

where the diagonal and o¤-diagonal elements of inverse matrix B�1 = (bij) are

bii =
(n� 2)
 � 2

(2 + 
) [(n� 1)
 � 2] and bij = �



(2 + 
) [(n� 1)
 � 2] :

Hence the Bertrand price of �rm k for k = 1; 2; :::; n is

pBk =
�(2 + 
) (a+ c) + t

n�
(n� 1)
2 + (n� 2)
 � 2

�
�k + 


P
i 6=k �i

o
(2 + 
) [(n� 1)
 � 2] :

Introducing new variables to simplify the expression of the Bertrand prices

pBk =
1

K

8<:�(2 + 
) (a+ c) + t
24N�k + 
X

i 6=k
�i

359=; (5)

with
K = (2 + 
) [(n� 1)
 � 2] and N = (n� 1)
2 + (n� 2)
 � 2:

Substituting (5) into (1) presents the Bertrand output of �rm k,

qBk = a� pBk + 

X
i 6=k

pBi for k = 1; 2; :::; n (6)

and the total emission level at the Bertrand equilibrium is

EB =
nX
k=1

�kq
B
k : (7)

We discussed the conditions to guarantee that both pBk and q
B
k are positive in the Appendix.
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3 Ambient Charge E¤ects

The e¤ect of an increase in the ambient charge on qBk is obtained by di¤erentiating (6) with respect
to t,

dqBk
dt

= �dp
B
k

dt
+ 


X
i 6=k

dpBi
dt

where

dpBk
dt

=
1

K

0@N�k + 
X
i 6=k

�i

1A and
dpBi
dt

=
1

K

0@N�i + 
X
j 6=i

�j

1A :
Arranging the terms yields the following form of the ambient charge e¤ect on the Bertrand produc-
tion:

dqBk
dt

=
1

K

0@N1�k +N2X
i 6=k

�i

1A (8)

with
N1 = 2� (n� 2)
 and N2 = (n� 1)
3 + 2(n� 2)
2 � 3
:

Hence di¤erentiating (7) with respect to t and then substituting (8) into the derivative yields, after
arranging the terms, the e¤ect on the total pollution in the following form,

dEB

dt
=
1

K

h
N1
Xn

k=1
�2k +N2

Xn

k=1

Xn

i 6=k
�k�i

i
(9)

Before proceeding to determine the sign of the ambient charge e¤ect, we provide a useful relation
about the relative order of magnitudes of

nX
k=1

nX
i 6=k

�k�i and
nX
k=1

�2k (10)

which can be proved as follows. Using the relation 2ab � a2 + b2 due to (a� b)2 � 0;
nX
k=1

nX
i 6=k

�k�i

= (�1�2 + � � �+ �1�n) + (�2�1 + �2�3 � � �+�2�n) + � � �+ (�n�1 + � � �+ �n�n�1)

� 1

2

�
�21 + �

2
2 + � � �+ �21 + �2n

�
+ (�22 + �

2
1 + �

2
2 + �

2
3 + � � �+ �22 + �2n) + � � �+ (�2n + �21 + � � �+ �2n + �2n�1)

=
1

2
2(n� 1)

nX
k=1

�2k

= (n� 1)
nX
k=1

�2k:

Therefore we have
nX
k=1

nX
i 6=k

�k�i � (n� 1)
nX
k=1

�2k (11)
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where equality holds if and only if �1 = �2 = � � � = �n: Next dividing the �rst term in (10) by the
second term gives the ratio that goes to zero if �k is �xed and all other �i ! 0;Xn

k=1

Xn

i 6=k
�k�iXn

k=1
�2k

! 0: (12)

Since this ratio is continuous in the �i values, we have the following result with (12) and (11).

Theorem 1 For any number M 2 (0; n� 1] that depends on the �k values, we have
nX
k=1

nX
i 6=k

�k�i =M
nX
k=1

�2k: (13)

Now with this result, we proceed to determine the sign of (9). For sake of notational simplicity,

A =

nX
k=1

nX
i 6=k

�k�i > 0 and B =
nX
k=1

�2k > 0 (14)

with which (9) can be written as

dEB

dt
=
B(N1 +MN2)

K
: (15)

Solving N2 = 0; K = 0 and N1 = 0 for 
 presents the following threshold values,


1n =
(2� n) +

p
n2 � n+ 1

n� 1 ; 
2n =
2

n� 1 and 

3
n =

2

n� 2

where N2; K and N1 were de�ned earlier. The followings in the (n; 
) plane are clear,

N2 R 0 according to 
 R 
1n;

K R 0 according to 
 R 
2n;

N1 R 0 according to 
 Q 
1n
and

0 < 
1n < 

2
n < 


3
n:

Furthermore,

2n < 1 as n > 3 and 


3
n < 1 as n > 4:

Consider now N1 +MN2 as function of M and 
 and denote it as g(M;
): It can be checked
that

g(0; 
) = N1 at M = 0

and
g(n� 1; 
) = (2 + 
) [(n� 1)
 � 1]2 at M = n� 1;
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where 
0n = 1=(n� 1) is the minimum point of g(n� 1; 
) for 
 > 0 and therefore

g(n� 1; 
)
(
> 0 if 
 > 0 and 
 6= 
0n;

= 0 if 
 = 
0n:

It is easy to see that 
1n > 

0
n: We denote the feasible region of 
 by I that is, under Assumptions

1 and 2, de�ned as
I = (0; 
2n) [ (
2n; 1)

and divide it to four subintervals with the threshold values of 
 de�ned above:

I1 = (0; 

1
n]; I2 =

�

1n; 


2
n

�
; I3 = (


2
n; 


3
n] and I4 =

�

3n; 1

�
with (0; 
2n) = I1 [ I2 and (
2n; 1) = I3 [ I4.
In each interval, the direction of the ambient charge e¤ect is determined as follows.

(I). In interval I1; N1 > 0; N2 < 0 and K < 0: g(M;
) decreases in M; g(0; 
) > 0 and
g(n� 1; 
) > 0 except 
 = 
0n: Hence

dEB

dt

(
= 0 if M = n� 1 and 
 = 
0n,

< 0 otherwise.

The equality holds on the dotted downward curve shown in Figure 2, the curve on which

 = 
0n holds. At the right end point, 
 = 
1n that is on the lowest solid downward curve,
N1 > 0 and N2 = 0; so with all values of M; N1 +N2M = N1: Hence

dEB

dt
=
BN1
K

< 0:

(II). In interval I2; N1 > 0, N2 > 0 and K < 0: For all values of M 2 (0; n � 1], N1 +MN2 > 0
implying that

dEB

@t
=
B(N1 +MN2)

K
< 0;

since the numerator is positive and the denominator is negative. We already exclude, by
Assumption 2, the value of 
2n = 2=(n� 1); which is on the middle solid downward curve that
is also the boundary between the yellow and orange regions in Figure 2.

(III). In interval I3; N1 > 0; N2 > 0; K > 0 and M > 0; so

dEB

dt
=
B(N1 +MN2)

K
> 0;

since both the numerator and denominator are positive. At the right end point 
 = 
3n , which
is on the upper solid downward curve, N1 = 0 and N2 > 0; so for all positive values of M;

dEB

dt
=
BMN2
K

> 0:
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(IV). In interval I4; N1 < 0; N2 > 0 and K > 0; so g(0; 
) < 0 and g(n � 1; 
) > 0: Therefore
there is a unique value of M =M0 such that g(M0; 
) = 0. Then

dEB

dt

8>><>>:
> 0 if M > M0;

= 0 if M =M0;

< 0 if M < M0;

where

M0 =
(n� 2)
 � 2

[(n� 1)
2 + 2(n� 2)
 � 3] 
 : (16)

If dEB=dt < 0; then EB strictly decreases in t; if the inequality is reversed, then EB strictly
increases in t and if dEB=dt = 0; then the total emission output does not depend on t, that is, the
ambient charge has no e¤ect on the total emission output of the industry. We can summarize the
above derivations as follows:

Theorem 2 Under Assumptions 1 and 2, we have the following ambient charge e¤ect on the total
level of pollution:

(a) EB strictly increases in t if 
2n < 
 � 
3n or 
3n < 
 < 1 and M > M0;

(b)EB strictly decreases in t if 0 < 
 < 
2n except 
 =
1

n� 1 and M = n� 1 or 
3n < 
 < 1 and M < M0;

(c) EB does not depend on t if 
 =
1

n� 1 and M = n� 1 or 
3n < 
 < 1 and M =M0:

The �rst condition of Theorem 2(b) holds in the interior of the yellow region except the dotted
curve and so does the �rst half of Theorem 2(a) in the orange region in Figure 1. As will be
discussed in the Appendix, pBk and q

B
k can be negative for some combinations of (n; 
) under given

speci�cation of a; c; t and �k: To consider these non-negative conditions may introduce unnecessary
complication into Figure 1. Thus, at the expense of accuracy, we eliminate these conditions from
Figure 1.

Figure 1. Division of the (n; 
) plane
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From Theorem 2, we can easily derive the following results.

Corollary 1 In Bertrand duopoly and triopoly, the ambient charge e¤ect is always negative,

dEB

dt
< 0:

Proof. For n = 2; since 
12 =
p
3; I � I1: For n = 3; since 
23 = 1; I = I1 [ I2: Theorem 2(b)

implies that EB strictly decreases in t:

Notice that point (2; 1) is on the dotted curve as 
02 = 1 in duopoly and that the vertical dotted
line at n = 3 crosses the lower solid curve at the lower light blue point at (3; 
13) with 


1
3 ' 0:823

and the middle solid curve at the upper light blue point (3; 
23) with 

2
3 = 1 as seen in Figure 1.

Corollary 2 In Bertrand quadropoly, the domain of 
 is divided into two parts I1[I2 and I3 where

dEB

dt
< 0 for t 2 I1 [ I2 and

dEB

dt
> 0 for t 2 I3:

Proof. For n = 4; the vertical dotted line at n = 4 crosses the middle solid curve (i.e., K = 0) at

24 = 2=3; the end point of I2 and the upper solid curve at 


3
4 = 1, the end point of I3: Theorem

2(a) and (b) imply the positive e¤ect for t 2 I3 and the negative e¤ect for t 2 I1 [ I2; respectively,
where I1 [ I2 [ I3 = I:

This corollary indicates that the perverse e¤ect shown by Ganguli and Raju (2012) is possible
for n = 4: For n � 5; as is seen in Figure 1, the interval I4 is not empty, implying a possibility of
the perverse e¤ect.

Corollary 3 For n � 5; the domain I is divided into four subintervals where

dEB

dt
< 0 for t 2 I1 [ I2 and

dEB

dt
> 0 for t 2 I3

and for t 2 I4;

dEB

dt
< 0 for M < M0;

dEB

dt
= 0 for M =M0 and

dEB

dt
> 0 for M > M0:

Proof. The �rst half is clear from Theorem 2. The second half is also clear from our earlier
discussion about interval I4.

The second result of Corollary 3 is illustrated in Figure 2 with n = 5; 6; 7; 8; 12 and in�nity. Each
M0-curve is de�ned for 
 � 
3n and divides the (
;M) plane into two parts: the ambient charge
is good-nature (i.e., dEB=dt < 0) below the curve and perverse (i.e., dEB=dt > 0) above. These
corollaries imply that the perverse e¤ect discussed by Ganguli and Raju (2012) is impossible for

9



n � 3 and possible for n � 4. As n increases, the threshold value of 
3n becomes smaller and
the M0-curve shifts upward, implying that a possibility of the perverse e¤ect becomes less. The
threshold values of 
 are


35 =
2

3
; 
36 =

1

2
; 
37 =

2

5
; 
38 =

1

3
; and 
312 '=

1

5
:

Notice that the M0-curve with n =1 is illustrated as the dotted curve. In Figure 2, 1=7 and 1=3
on the right vertical line are the M0-values with n = 5 and n = 1 for 
 = 1; respectively. Any
other M0-values for 
 = 1 are possible to obtain.

Figure 2. M0-curves with n = 5; 6; 7; 8; 12 and 1

4 Concluding Remarks

We have examined the ambient charge e¤ect on the observable concentration of pollutants under
Bertrand competition. The main result was summarized in Theorem 2. We found that the ambient
charge de�nitely regulates the NPS pollutions in duopoly and triopoly markets. If the number of
the �rms in the Bertrand market increases, we demonstrated that controllability of the ambient
charge depends on the substitutability of the di¤erentiated goods.
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Appendix

In this Appendix, we examine the conditions under which pBk and q
B
k are positive.

� Conditions for positive pBk

Equation (5) can be rewritten as

KpBk = t(n� 1)�k
2 + ft [(n� 3)�k + �]� (a+ c)g 
 � 2 [t�k + (a+ c)] (A-1)

with � =
Pn

i=1 �i: Notice that the right hand side of (A-1) is quadratic in 
. Since its leading term
is positive and its constant term is negative, there are two roots for 
, one is negative and the other
is positive that is denoted by �
:

KpBk < 0 if 
 < �
 and Kp
B
k > 0 if 
 > �
:

By the de�nition of K;

K < 0 if 
 < 
� =
2

n� 1 and K > 0 if 
 > 
�

where 
� is denoted by 
2n in Section 3. Therefore we have

pBk > 0 if either 
 < min [�
; 

�] or 
 > max [�
; 
�] (A-2)

and
pBk < 0 if min [�
; 


�] < 
 < max [�
; 
�] : (A-3)

To check the relative magnitude between �
 and 
�; we denote the right hand side of (A-1) as S(n; 
)
and substitute 
� into it,

S (n; 
�) = � 2

n� 1 [(a+ c)n� t�] :

where two inequality conditions, � � n as 0 � �k � 1 and 0 � t � 1; imply

(a+ c)n� t� � (a+ c)n� n = (a+ c� 1)n:

Hence, if a + c > 1; then S(n; 
) > 0 on the K = 0 locus, implying that the S(n; 
) = 0 locus is
located above the K = 0 locus. It is also supposed that the S(n; 
) = 0 locus is located below if
a + c takes small values. In Figure A with �k = 2=3 and t = 1=2, we visualize these relations in
which the red curve corresponds to the K = 0 locus and the blue curve to the S(n; 
) = 0 locus.
In Figure A(I) where 
� < �
 holds, pBk > 0 in the lower shaded region below the red curve and the
upper shaded region above the blue curve. On the other hand, pBk < 0 in the white region between
the red and blue curves. In the same way, pBk > 0 in the shaded regions and p

B
k < 0 in the white

region in Figure A(II) where �
 < 
� holds. For the current speci�cation of the parameters, the blue
curve is descrived by


 =
1 + 3(a+ c)

n� 1

11



that becomes identical with the red curve if a+ c = 1=3:

(I) a+ c = 2 (II) a+ c = 1=6

Figure A. Shaded regions for positive pBk and white region for negative p
B
k

� Conditions for positive qBk
Consider next the positivity of output. Multiplying K to both sides of (6) gives

KqBk = Ka�KpBk + 

X
i 6=k

KpBi (A-4)

Substituting the terms in the bracket of (5) reduces the right hand side of (A-4) to a cubic equation
in 
;

KqBk = a3

3 + a2


2 + a1
 + a0

where

a3 = t(n� 1)(�� �k) > 0;
a2 = �(n� 1)c+ 2t(n� 2)(�� �k);
a1 = �(a+ c)� 2c(n� 2)� t [3(�� �k) + (n� 2)�k] < 0 for n � 2;
a0 = 2 (c� a+ t�k) :

According to Descartes� rule of signs, this cubic equation, regardless of the sign of a2; has one
positive root if a0 < 0 since the number of sign di¤erences between consecutive coe¢ cients is
one while it has zero or two positive roots including the identical roots if a0 > 0 since the number
is two. Let us denote this function by f(
): In the case of a0 < 0; suppose that ~
 solves f(
) = 0.
Then

KqBk = f(
) Q 0 if 
 Q ~
.
Hence we have

qBk > 0 if either 
 < min [~
; 

�] or 
 > max [~
; 
�] (A-5)

and
qBk < 0 if min [~
; 


�] < 
 < max [~
; 
�] : (A-6)
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In the case of a0 > 0 and f(
) > 0 for all 
 > 0; we have

qBk > 0 if 
 > 

� and qBk < 0 if 
 < 


�: (A-7)

In the case of a0 > 0 and f(
) = 0 has two positive solutions, 0 < ~
1 < ~
2;

KqBk = f(
) < 0 if ~
1 < 
 < ~
2 and Kq
B
k = f(
) > 0 if 
 < ~
1 or ~
2 < 
.

Hence we have

qBk > 0 if 
 > 

� and 
 < ~
1 or ~
2 < 
 or if 
 < 


� and ~
1 < 
 < ~
2: (A-8)

� pBk , qBk , �Bk and EB along 
 = 1=(n� 1)

We can check how pBk , q
B
k , �

B
k and E

B look like if 
 goes to 
� where

as 
 ! 
�;

8>><>>:
N = (n� 1)
2 + (n� 2)
 � 2! 
�;

K = (2 + 
) [(n� 1)
 � 2]!
(
+0 if 
 > 
�;

�0 if 
 < 
�:

From (5) and these results, we further have

KpBk ! � 2

n� 1 [(a+ c)n� t�] = Z

implying that

pBk !
(
+1 if either 
 > 
� and Z > 0 or 
 < 
� and Z < 0;

�1 if either 
 > 
� and Z < 0 or 
 < 
� and Z > 0;

that is, one sided limit is �1 and the other +1: Further,

K
�
qBk � a

�
! [(n� 1)
� � 1]Z = Z:

Thus KqBk has same limit as Kp
B
k : Multiplying by K

2 both sides of (3) presents

K2�Bk = (Kp
B
k )(Kq

B
k )� cK2qBk � t

24�kK2qBk +
X
i 6=k

�iK
2qBk �K2 �E

35 :
Notice that K ! 0 implies K

�
KqBk

�
; K

�
KqBi

�
and K2 �E ! 0. Thus K2�Bk ! Z2: Therefore we

have
�Bk ! +1 form both sides of 
 < 
� and 
 > 
�:
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