
IERCU 

Institute of Economic Research, Chuo University 

50th Anniversary Special Issues 

 

Discussion Paper No.20６ 

 

Existence of a 2D Torus in a Continuous-Time Model 

of a Liquidity Trap 

 

Eiji Tsuzuki 

Shunsuke Shinagawa 

Tomohiro Inoue 

 

August 2013 

 

 

 

 

 

 

 

 

I 

 

 

 

 

INSTITUTE OF ECONOMIC RESEARCH 

Chuo University 

Tokyo, Japan 

 



Existence of a 2D Torus in a Continuous-Time Model

of a Liquidity Trap

Eiji Tsuzuki∗, Shunsuke Shinagawa†, and Tomohiro Inoue†

Abstract

The main purpose of this study is to show the existence of a 2D torus in a

macrodynamic model of a liquidity trap. The model developed here has two steady-

state points: a targeted steady state and a liquidity trap. When a 2D torus exists

around a targeted steady state, an economy will keep fluctuating on a torus and

never reach the state, unless the variables jump. We develop an analysis using the

continuous-time New Keynesian dynamic general equilibrium model proposed by

Benhabib et al. (2003). Although their model takes the form of “money in the

production function,” we reconstruct it into the more typical “money in the utility

function.”

JEL Classification: E32; E52

Keywords: new Keynesian DGE model, backward-looking interest-rate rules, 2D torus,

homoclinic orbit, Hopf bifurcation

1 Introduction

Two types of New Keynesian dynamic general equilibrium (DGE) model exist: one at-

tributes the cause of liquidity traps to a decrease in the natural rate of interest, while
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the other to the emergence of multiple steady states. Eggertsson and Woodford (2003)

is representative of the former, while Benhabib et al. (2001) is that of the latter. This

study is based on the latter, in which the liquidity trap is regarded as the result of the

emergence of multiple steady states.

Benhabib et al. (2001) demonstrate that a steady state other than that targeted by the

central bank can emerge when a zero lower bound on nominal interest rates is considered.

If the central bank conducts an active interest rate policy that satisfies the Taylor principle

in the neighborhood of a targeted steady state, the economy will be trapped in a low-

inflation (and sometimes deflationary) state.1 They call this low-inflation steady state a

liquidity trap.

Benhabib et al.’s (2001) model compounds a two-dimensional system of differential

equations. They completely analyze the dynamics and demonstrate the existence of peri-

odic solutions, a homoclinic orbit, and a path connecting the targeted steady state with

the liquidity trap (i.e., a saddle connection). Further, Benhabib et al. (2002a) propose a

model that compounds a system of difference equations to show the existence of chaos.

They suggest that fiscal policies that can prevent an economy from entering a liquidity

trap, considered by Benhabib et al. (2002b), are ineffective in avoiding chaos.

Moreover, Benhabib et al. (2003) propose a continuous-time model of liquidity traps

that incorporates a backward-looking interest-rate rule under which the central bank ad-

justs the nominal interest rate in response to a weighted mean of past inflation rates.

Their model compounds a three-dimensional system of differential equations. As in Ben-

habib et al. (2001), Benhabib et al. (2003) demonstrate that multiple steady states (i.e.,

a targeted steady state and a liquidity trap) can emerge and that periodic solutions, ho-

moclinic orbits, and saddle connections exist. However, they make little reference to a

torus.

This study examine the existence of a 2D torus under plausible parameter values in

a continuous-time New Keynesian DGE model, which incorporates a backward-looking

interest-rate rule with zero lower bound on the nominal interest rate.

Applying Kopell and Howard’s (1975) theorem, Benhabib et al. (2003) demonstrate

that a homoclinic orbit can exist around a targeted steady state. If a 2D torus does

not exist, a solution originating from inside the orbit will converge to the steady state,

because it is a stable spiral point (indeterminate). However, if a 2D torus exists, a solution

1For general arguments about the effects of interest-rate policies using the New Keynesian DGE model,

see Woodford (2003), Gaĺı (2008), and Walsh (2010).
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originating within the orbit will never attain the steady state unless the variables jump,

because solutions keep fluctuating on a torus. Therefore, alongside the liquidity trap,

there exists another possibility that an economy cannot reach a targeted steady state.

Moreover, as Behnabib et al. (2002a) suggest, these fluctuations cannot be avoided by

fiscal policies that can prevent an economy from falling into liquidity traps.

This paper is organized as follows. Section 2 proposes a continuous-time new Key-

nesian DGE model incorporating a backward-looking interest-rate rule with zero lower

bound on the nominal interest rate. Section 3 presents a theorem needed to verify the

existence of a homoclinic orbit and applies it to the model proposed in Section 2. Section

4 set the parameters at plausible values and numerically examines the existence of a 2D

torus. Section 5 presents the conclusions.

2 The model

Although Benhabib et al.’s (2003) model takes the form of the “money in the production

function,” we reconstruct it into the more typical “money in the utility function.”

The model comprises three economic agents: firms, households, and the consolidated

government (central bank + government). We assume a perfectly competitive goods

market, a monopolistically competitive labor market, sticky nominal wages, and flexible

prices.

Firms

Firms aggregate a differentiated labor force li (i ∈ [0, 1]) supplied by households according

to the Dixit-Stiglitz function as follows:2

l =

[
∫ 1

0

l
φ−1

φ

i di

]

φ
φ−1

, (1)

where l is the composite labor and φ (> 1) is the elasticity of labor supply.

Firms produce goods using composite labor l and a constant volume of input k that

they possess (e.g., land). We specify the form of the production function as a constant

elasticity of substitution:

y = [ζlδ + (1 − ζ)kδ]
1

δ , (2)

2See Dixit and Stiglitz (1977) and Blanchard and Kiyotaki (1987) for details.
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where 0 < ζ < 1 and δ is the technical substitutability between l and k.3 For simplicity,

we employ the following assumption:

Assumption 1 l and k are perfectly substitutable (δ → 1).

Given the nominal wage rate of labor i Wi and the volume of composite labor l, firms

determine the volume of li to minimize total cost
∫ 1

0
Wilidi. The first-order condition for

optimality is given by

li =

(

Wi

W

)

−φ

l, (3)

where W is the nominal wage rate of composite labor defined as

W =

[
∫ 1

0

W 1−φ
i di

]

1

1−φ

. (4)

Because the goods market is perfectly competitive, firm profits are zero. Further, we

assume that the value created by input k is distributed to households in a lump sum.

Then ζp = W holds, where p is the price of goods.

Households

Households obtain utility from consumption c and real money balances m,4 and disutility

from labor li and wage negotiations ωi (reflected by the change rate in nominal wage).

We specify the form of the instantaneous utility function as

ln c+ lnm−
l1+ψi

1 + ψ
−
η

2
(ωi − ω̄)2,

where ψ (> 0) denotes the elasticity of marginal disutility of labor and η (> 0) denotes

the stickiness of nominal wages; if η > 0, nominal wages are sticky, and if η → 0, they are

flexible.5 ω̄ is a constant that reflects households’ subjective views about inflation. They

take wage adjustment costs when the rate of change in the nominal wages differs from ω̄.

3In Benhabib et al.’s (2003) model, real money balances m enter Eq. (2) in place of k as an input.
4For precision, we must write c as ci and m as mi; however, because households are identical in

consumption and money holdings, we simply denote them by c and m, respectively.
5We followed Rotemberg’s (1982) formulation of wage adjustment cost. η

2
(ωi − ω̄)2 can be regarded

as psychological stresses caused by wage negotiations.
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Assuming that assets A are composed of money M and bonds B

A = M +B,

we obtain

Ȧ = RB +Wili + p(1 − ζ)k − pc− pτ, (5)

where R is the nominal interest rate of bonds. Eq. (5) indicates that income p(1− ζ)k as

well as capital and wage income increase assets and that consumption and tax pτ decrease

them. Rewriting Eq. (5) in terms of real variables, we obtain

ȧ = ra+ wili + (1 − ζ)k − c− τ −Rm, (6)

where a = A
p

is real asset balances, r = R− π is the real interest rate, and wi = Wi

p
is the

real wage rate of labor i.

Household i determines the volume of c, m, and ωi subject to the demand function

for labor i (3) and the budget constraint (6) to maximize the discounted present value of

the stream of utility, given by

Ui =

∫

∞

0

[

ln c+ lnm−
l1+ψi

1 + ψ
−
η

2
(ωi − ω̄)2

]

e−ρtdt,

where ρ (> 0) is the subjective discount rate.

First-order conditions for optimality are given by (see Appendix A.1)

ċ

c
+ π + ρ = R =

c

m
, (7)

ω̇ = ρ(ω − ω̄) −
φl1+ψ

η
−

(1 − φ)ζl

ηc
. (8)

Consolidated government

We formulate the central bank’s policy rule as follows:

R = R∗e
D
R∗

(πp
−π∗), (9)

which represents a backward-looking interest-rate rule with zero lower bound on the nom-

inal interest rate.6 D (> 0) denotes the elasticity of the interest rate with respect to the
6The original Taylor rule by Taylor (1993) assumes that the nominal interest rate responds both to

the inflation rate and the output (GDP gap). However, there is a positive correlation between the two

variables; hence, there are no qualitative differences in the results of two cases where only inflation is

considered and where both inflation and output are considered. For the sake of simplicity, we consider a

special case where the nominal interest rate responds only to the inflation rate.
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inflation rate. If D > 1, the central bank conducts an active policy around the targeted

steady state (π∗); however, it conducts a passive policy if D < 1. πp is a weighted mean

of past inflation rates, defined as

πp(t) = b

∫ t

−∞

π(s)e−b(t−s)ds, (10)

where b (> 0) denotes the degree of backward looking of the central bank. As Benhabib et

al. (2003) show, if the central bank conducts an active policy around the targeted steady

state, another steady state with low inflation (i.e., a liquidity trap) emerges.

Differentiating Eq. (10) with respect to time t, we obtain

π̇p = b(π − πp). (11)

Government expenditures are assumed to be zero. Then the budget consitarint of the

consolidated government is given by

Ḃ + Ṁ = RB − pτ.

Rewriting this equation in terms of real variables, we obtain

ȧ = ra− τ − Rm.

The present discounted value of total government liabilities must converge to zero:

lim
t→∞

a(t)e−
R t
0
r(s)ds = 0.

This type of fiscal-monetary regime is refered to the Ricardian policy (see Benhabib et

al. 2002b).

System of differential equations

Using the goods market equilibrium condition y = c, our model can be summarized in

the following system of differential equations:

ċ = [R∗e
D
R∗

(πp
−π∗) − π − ρ]c,

π̇ = ρ(π − π̄) −
φ( c

ζ
− 1−ζ

ζ
k)1+ψ

η
−

(1 − φ)[1 − (1 − ζ)k
c
]

η
,

π̇p = b(π − πp),

(12)

where π̄ = ω̄ because ζp = W .
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Steady states

The steady-state value of π and πp in the targeted steady state is given by π∗ = (πp)∗ =

R∗ − ρ.

Define that

h(c) ≡ −φ

(

c

ζ
−

1 − ζ

ζ
k

)1+ψ

− (1 − φ)

[

1 − (1 − ζ)
k

c

]

,

we then obtain

π̇ = ρ(π − π̄) + h(c)/η.

Hence, the long-run Phillips curve is given by π − π̄ = −h(c)/(ρη). Given the value of π,

the steady-state value of c is determined to satisfy this equation. Because the volume of

employment l = 1
ζ
(y − (1 − ζ)k) = 1

ζ
(c− (1 − ζ)k) must be non-negative, c must satisfy

the condition that c ≥ c ≡ (1 − ζ)k.

Function h(c) can be rewritten as follows:

h(c) =

[

−
φ

ζ1+ψ
(c− c)ψ − (1 − φ)

1

c

]

(c− c) ≡ ĥ(c)(c− c).

Therefore, the value of c that satisfies the equation ĥ(c) = g(c) ≡ −ρη(π∗−π̄)
c−c

is the steady-

state value.

• ĥ(c) is monotonically decreasing for c > c:

ĥ′(c) = −
φψ

ζ1+ψ
(c− c)ψ−1 − (φ− 1)c−2 < 0.

• ĥ(c) = (φ− 1)1
c
> 0 and limc→∞ ĥ(c) = −∞.

In addition, if π∗ < π̄, function g(c) is drawn as shown in Fig. 1; if π∗ > π̄, it is

drawn as shown in Fig. 2. Whenever π∗ < π̄ and the value of π̄ is sufficiently close to π∗,

ĥ(c) = g(c) has two real roots (c∗ and ĉ1) in the range of c > c (see Fig. 1). On the other

hand, if π∗ > π̄, ĥ(c) = g(c) has a unique real root (ĉ2) in the range of c > c independent

of parameter values.7

7If π∗ = π̄, c becomes a steady-state value. The steady-state value c represents an equilibrium at

which employment is zero. In our model, k and l are perfectly substitutable; hence, an economy can

produce and continue to consume goods using k only (without labor).
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ĥ(c)

g(c)

Figure 1: Case where π∗ < π̄ (two real roots exist)

0
c

c
r

ĉ2

ĥ(c)

g(c)

Figure 2: Case where π∗ > π̄

3 Existence of a homoclinic orbit

We present Kopell and Howard’s (1975) theorem that provides conditions for assuring the

existence of a homoclinic orbit.

Theorem 1 (Kopell and Howard, 1975; Theorem 7.1 and Corollary 7.1) : Let
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Ẋ = Fµ,ν(X) be a two-parameter family of ordinary differential equations on ℜn, F smooth

in all its arguments, such that Fµ,ν(0) = 0. Using a Taylor expansion, Ẋ = Fµ,ν(X) can

be written

Ẋ = (A+ µA1 + νA2)X +Q(X,X) +R1(X, µ, ν),

where A, A1, A2 are n × n matrices, the vector Q(X,X) contains terms quadratic in xi

and is independent of (µ, ν), and R1(X, µ, ν) = o(µxi, νxi, xixj). Also assume

1. dF0,0(0) has a double-zero eigenvalue corresponding to a single eigenvector e.

2. The mapping (µ, ν) → (det dFµ,ν(0), σ(dFµ,ν(0))) has a nonzero Jacobian at (µ, ν) =

(0, 0), where σ(dFµ,ν(0)) is the sum of the principal minors of dFµ,ν(0).

3. [dF0,0(0)Q(e, e)] has rank n.

Then there is a curve f(µ, ν) = 0 such that if f(µ0, ν0) = 0, Ẋ = Fµ0,ν0(X) has a

homoclinic orbit. This one-parameter family of homoclinic orbits (in X, µ, ν space) is on

the boundary of a two-parameter family of periodic solutions. For all sufficiently small

values of |ν|, |µ|, if Ẋ = Fµ,ν(X) has neither a homoclinic orbit nor a periodic solution,

there is a unique trajectory joining the critical (fixed) points (i.e., a saddle connection).

Applying Theorem 1

Consider the three-dimensional system of differential equations (12). We transform vari-

ables so as to make the origin a fixed point:

x1 = − ln(c/c∗), x2 = π − π∗, x3 = πp − π∗

Then System (12) can be rewritten as

ẋ1 = −R∗e
D
R∗
x3 + (x2 + π∗) + ρ,

ẋ2 = ρ(x2 + π∗ − π̄) −
φ

η

(

c∗

ζ
e−x1 −

1 − ζ

ζ
k

)1+ψ

−
(1 − φ)[1 − (1 − ζ) k

c∗
ex1 ]

η
,

ẋ3 = b(x2 − x3).

(13)

Further, we assume that (µ, ν) = (b + A21

ρ
, 1 −D),8 where A21 ≡ φ(1+ψ)

η
( c

∗

ζ
− 1−ζ

ζ
k)ψ c

∗

ζ
+

(1−φ)(1−ζ) k
c∗

η
.

8Changing the value of µ produces a corresponding change in the value of b.

9



Denote that X = [x1, x2, x3]
′, then Eq. (13) can be written as

Ẋ = Fµ,ν(X) = (F1(X, µ, ν), F2(X, µ, ν), F3(X, µ, ν)).

Because F is smooth and Fµ,ν(0) = 0, the premises of Theorem 1 are satisfied. We can

assert the following proposition.

Proposition 1 If A21 6= 0, there is a homoclinic orbit around the targeted steady state

for a certain set of parameter values.

Proof: See Appendix A.2.

4 Existence of a 2D torus

This section set the parameters at plausible values and demonstrates that a 2D torus can

surround the targeted steady state in the system of differential equations (13).

Following Benhabib et al. (2003), we set parameter values as shown in Table 1.9 In

the case where π̄ = 0.08 (π̄ > π∗), we obtain c∗ = 0.2012 and ĉ1 = 0.8840 under Table

1.10 On the other hand, if π̄ = 0.001, we obtain ĉ2 = 0.8875.

π∗ D φ ρ ψ η ζ k

0.01 1.5 21 0.005 1 350 0.8 1

Table 1: Parameter values

Steady state c∗

When the steady-state value of c is given by c∗ = 0.2012, we obtain A21 = −0.0568 6= 0.

Therefore, System (13) satisfies the conditions of Theorem 1 and has a homoclinic orbit.

Taking b as a bifurcation parameter, the dynamics of the system around the targeted

steady state c∗ vary as shown in Table 2, depending on the value of b.

9We set ζ = 0.8 and k = 1 here, but the main results in this study are not dependent on these values

and hold for a relatively wide range of values for ζ and k.
10h′(0.2012) > 0 and h′(0.8840) < 0. The long-run Phillips curve is given by π − π̄ = −h(c)/(ρη).

Hence, the relation is negative between c and π when h′(c) > 0, whereas the relation is positive when

h′(c) < 0. Thus, c = 0.8840 is viewed as the “usual” steady state.
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Value of b

b ∈ (0, bh) Unstable spiral (determinate).

b = bh ≃ 0.0033 Hopf bifurcation.

b ∈ (bh, bsc) Stable spiral (indeterminate) & unstable cycles.

b = bsc ≃ 0.0054 Homoclinic bifurcation.

bsc < b Saddle connection.

Table 2: Dynamics around the targeted steady state c∗

bh is the value of b that satisfies the conditions for a Hopf bifurcation, provided in

Appendix A.3. In the setting of Table 1, the Hopf bifurcation is subcritical, and therefore

an unstable cycle exists around the stable spiral point. Moreover, we calculate the homo-

clinic bifurcation value bsc as a value where cycles vanish.11 Fig. 3 shows the numerical

result when b = bsc. A homoclinic orbit is evident.12

In addition, after plotting D on the abscissa and b on the ordinate, we can see the

changes in bh and bsc when D increases (Fig. 4).
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Figure 3: Homoclinic orbit

11Technically, the homoclinic bifurcation value can be obtained using the Melnikov method. See Guck-

enheimer and Holmes (1983, p. 371) for details.
12Initial values of (x1, x2, x3) are (x1, x2, x3) = (0.811, 0.02, 0.001).
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Figure 4: Changes in bh and bsc

Fig. 5 shows the dynamics of a solution starting from a point inside the homoclinic

orbit. The two of three Lyapunov exponents converge to zero (Fig. 613). Hence, a 2D

torus exists inside the homoclinic orbit.

Such dynamics of a solution can also be seen for the values of b in the neighborhood

of bsc.

Steady states ĉ1 and ĉ2

When steady-state values of c are given by ĉ1 = 0.8840 (where π̄ > π∗) and ĉ2 = 0.8875

(where π̄ < π∗), the values of A21 are given by A21 = 0.1004 6= 0 and A21 = 0.1015 6= 0,

respectively. Therefore, in these cases, System (13) also satisfies the conditions of Theorem

1 and has a homoclinic orbit.

We also confirmed that the two of three Lyapunov exponents converge to zero. Hence,

a 2D torus exists.

13We construct this figure based on a Matlab code presented by Wolf et al. (1985).

12



-1.5 -1 -0.5 0 0.5 1
-0.4

-0.2

0

0.2

0.4

-12

-10

-8

-6

-4

-2

0

2

x 10
-3

Figure 5: Dynamics of a solution starting from a point inside the homoclinic orbit

0 0.5 1 1.5 2 2.5 3

x 10
4

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

λ
1

= 0.00023508

λ
2

= -0.00010045

λ
3

= -0.00061044

Time

Ly
ap

un
ov

 E
xp

on
en

ts

Figure 6: Dynamics of Lyapunov exponents

13



5 Conclusion

This study has analytically demonstrated the existence of a homoclinic orbit by applying

Kopell and Howard’s (1975) theorem to a variant of a continuous-time New Keynesian

DGE model of a liquidity trap (MIUF version of Benhabib et al’s 2003 model).

Under a plausible set of parameter values, we confirmed the existence of a 2D torus

inside a homoclinic orbit. Therefore, it is possible that a solution originating from a point

inside a homoclinic orbit keeps fluctuating on a torus and can never attain the targeted

steady state.

A Appendix

A.1 Household optimization

The household optimization problem is described as

Maximizec,m,ωi
Ui =

∫

∞

0

[

ln c+ lnm−
l1+ψi

1 + ψ
−
η

2
(ωi − ω̄)2

]

e−ρtdt,

subject to

ȧ = ra+ wili + (1 − ζ)k − c− τ − Rm,

Ẇi = ωiWi,

li =

(

Wi

W

)

−φ

l.

The Hamiltonian function of this problem can be written as

H = ln c+ lnm−
[(Wi

W
)−φl]1+ψ

1 + ψ
−
η

2
(ωi − ω̄)2

+ µ1

[

ra+
Wi

p

(

Wi

W

)

−φ

l − c− Rm

]

+ µ2ωiWi,

where µ1 and µ2 are the costate variables of a and Wi, respectively. We obtain the
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first-order conditions for optimality:

∂H

∂c
=

1

c
− µ1 = 0, (A.1)

∂H

∂m
=

1

m
− µ1R = 0, (A.2)

∂H

∂ω̄
= −η(ωi − ω∗) + µ2Wi = 0, (A.3)

µ̇1 = ρµ1 −
∂H

∂a
= (ρ− r)µ1, (A.4)

µ̇2 = ρµ2 −
∂H

∂Wi

= ρµ2 − [
φl1+ψi

Wi

+ µ1(1 − φ)
li
p

+ µ2ωi]. (A.5)

The transversality conditions are

lim
t→∞

a(t)e−ρt = 0,

lim
t→∞

Wi(t)e
−ρt = 0.

The Hessian of H(c,m, ωi), which we denote as |H |, is given by

|H | =

∣

∣

∣

∣

∣

∣

∣

− 1
c2

0 0

0 − 1
m2 0

0 0 −η

∣

∣

∣

∣

∣

∣

∣

.

The principal minors of |H |, which we denote |H1|, |H2|, and |H3|, are given by

|H1| = −
1

c2
, |H2| =

∣

∣

∣

∣

∣

− 1
c2

0

0 − 1
m2

∣

∣

∣

∣

∣

=
1

c2m2
, |H3| = |H | = −

1

c2m2η
.

Because |H1| < 0, |H2| > 0, and |H3| < 0, the second-order conditions for maximizing H

are satisfied.

Because households are symmetric, we can drop subscript i from li, Wi, and ωi; li = l�
Wi = W�and ωi = ω. Considering these expressions, Eqs. (A.1)–(A.5) are combined to

obtain

ċ

c
+ π + ρ = R =

c

m
, (A.6)

ω̇ = ρ(ω − ω̄) −
φl1+ψ

η
−

(1 − φ)ζl

ηc
. (A.7)
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A.2 Applying Theorem 1 to the system of differential equations

(13)

Condition 1 The Jacobian matrix of F is given by

dFµ,ν(X) = J =







0 1 −De
D
R∗
x3

Z21 ρ 0

0 b −b






,

where Z21 ≡
φ(1+ψ)

η
( c

∗

ζ
e−x1 − 1−ζ

ζ
k)ψ c

∗

ζ
e−x1 +

(1−φ)(1−ζ) k
c∗
ex1

η
.

Evaluating J at X = 0, we obtain

dFµ,ν(0) = J
∗ =







0 1 −D

A21 ρ 0

0 b −b






.

The characteristic equation of J is written as

∆(λ) = det(J∗ − λI)

= det







−λ 1 −D

A21 ρ− λ 0

0 b −b− λ







= λ3 − (ρ− b)λ2 − (ρb+ A21)λ− A21b(1 −D).

Because b = b̃ ≡ −A21/ρ and D = 1 hold at (µ, ν) = (0, 0), we obtain

dF0,0(0) = J∗

0,0 =







0 1 −1

A21 ρ 0

0 b̃ −b̃.






.

The characteristic equation of this matrix is given by

∆0,0(λ) = λ3 − (ρ− b̃)λ2 = λ2(λ− (ρ− b̃)),

which has double-zero eigenvalues and one nonzero eigenvalue of ρ− b̃. Hence, Condition

1 is satisfied.
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The eigenvector associated with zero eigenvalues e = [e1, e2, e3]
′ satisfies

dF0,0(0)e = 0e,






e2 − e3

A21e1 + ρe2

b̃e2 − b̃e3






=







0

0

0






,

and therefore

e = q







1

b̃

b̃






,

where q is an arbitrary constant.

Condition 2

det dFµ,ν(0) = A21b(1 −D)

= A21

(

µ−
A21

ρ

)

ν.

Hence, the Jacobian matrix of the map (µ, ν) → (det dFµ,ν(0), σ(dFµ,ν(0))) is given by
[

A21(1 −D) A21b

σµ σν

]

.

Evaluating this matrix at (µ, ν) = (0, 0), we obtain
[

0 A21b̃

σµ(dF0,0(0)) σν(dF0,0(0))

]

.

This matrix cannot become zero as long as b̃ 6= 0 (i.e., A21 6= 0). Therefore, if b̃ 6= 0,

Condition 2 is satisfied. There is no need to calculate σ because it is only necessary to

confirm that the above matrix is nonzero.

Condition 3 The Hessian matrix of F1 is given by

H1 =
d2F1

dX2
=







0 0 0

0 0 0

0 0 −D2

R∗
e

D
R∗
x3






,
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the Hessian matrix of F2 is given by

H2 =
d2F2

dX2
=







−A21(1 + ψ)e−x1(1+ψ) 0 0

0 0 0

0 0 0






,

and the Hessian matrix of F3 is given by

H3 =
d2F3

dX2
=







0 0 0

0 0 0

0 0 0






.

Evaluating these matrices at (X, µ, ν) = (0, 0, 0), we obtain

H1 =







0 0 0

0 0 0

0 0 − 1
R∗






, H2 =







−A21(1 + ψ) 0 0

0 0 0

0 0 0






, H3 = 0.

Using these expressions, we obtain

Q(X,X) =







1
2
X ′H1X

1
2
X ′H2X

1
2
X ′H3X






=







−1
2

x2

3

R∗

−1
2
A21(1 + ψ)x2

1

0






.

Substitute the eigenvector e = [1, b̃, b̃]′ into X to obtain

Q(e, e) =







−1
2
b̃2

R∗

−1
2
A21(1 + ψ)

0






.

Therefore,

[dF0,0(0)Q(e, e)] =







0 1 −1 −1
2
b̃2

R∗

−b̃ρ ρ 0 −1
2
A21(1 + ψ)

0 b̃ −b̃ 0






.

As long as b̃ 6= 0 (A21 6= 0), the rank of this matrix is 3. Hence, if b̃ 6= 0, Condition 3 is

satisfied.
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A.3 Hopf bifurcation theorem

The Hopf bifurcation theorem for a three-dimensional system of differential equations

represented by the coefficients of a characteristic equation is proposed by Asada (1995).

Theorem 2 (Asada, 1995) : There are periodic solutions that bifurcate from the fixed

point X∗ if and only if the characteristic equation ∆(λ;µ) = λ3 + a1λ
2 + a2λ + a3 = 0

satisfies the following conditions at µ = µ1:

(i) a1 6= 0, a2 > 0, ∆1 ≡ a1a2 − a3 = 0,

(ii) d∆1

dµ
6= 0.
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