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Abstract
Heterogeneous duopolies with product differentiation and isoelas-

tic price functions are examined in which one firm is quantity setter
and the other is price setter. The reaction functions and the Cournot-
Bertrand (CB) equilibrium are first determined. It is shown that the
best response dynamics with continuous time scales and without time
delays is always locally asymptotically stable. This stability can be
however lost in the presence of time delays. Both fixed and con-
tinuously distributed time delays are examined, stability conditions
derived and the stability regions determined and illustrated. The re-
sults are compared to Cournot-Cournot (CC) and Bertrand-Bertrand
(BB) dynamics. It turns out that continuously distributed lags have
smaller instabilizing effect on the equilibria than fixed lags, and both
homogeneous (CC and BB) competitions are more stable than the
heterogeneous competitions.
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1 Introduction

The effect of information delay in dynamic economic models has been in-
troduced by Invernizzi and Medio(1991), and its application to dynamic
oligopolies has been examined by Chiarella and Khomin(1996) and Chiarella
and Szidarovszky(2001). In investigating concave quantity adjusting oligopolies,
they have shown that the presence of information delay has an instabilizing
effect on the equilibrium. Furthermore a complete stability analysis was per-
formed in the case of continuously distributed time lags, and the occurrence
of Hopf bifurcation was verified giving the possibility of the birth of limit
cycles around the equilibrium. No such study was given for price adjusting
oligopolies, for heterogeneous competitions and for markets with isoelastic
demand functions.
In this paper, heterogeneous duopolies will be examined with product

differentiation and isoelastic inverse demand functions. The paper develops
as follows. In Section 2 the best responses of the firms will be determined
and the Nash equilibrium computed. In Section 3, the stability of the equi-
librium will be examined without time delays. Dynamics with time delays
will be studied, the one with fixed time delays in Section 4 and then the one
with continuously distributed delays in Section 5. In Section 6, we will also
compare these two approaches. In Section 7 our results on heterogeneous
duopolies will be compared to the homogeneous cases of quantity and price
adjusting duopolies, and finally, concluding remarks will be given in Section
8.

2 Cournot-Bertrand Equilibrium

A duopoly is considered with product differentiation and isoelastic demand
functions. The inverse demand functions of firms 1 and 2 are assumed to
have the following forms:

p1 =
1

x1 + θ1x2
(1)

and
p2 =

1

θ2x1 + x2
, (2)

where θ1 and θ2 denote the degrees of production differentiation and fulfill
Assumption 1 below.
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Assumption 1. 0 < θi < 1.

In the following, we consider the Cournot-Bertrand (CB henceforth) com-
petition in which firm 1 is a quantity-setter and firm 2 is a price-setter. By
interchanging the firms we can have the identical Bertrand-Cournot (BC)
competition. Let c1 and c2 denote the constant marginal costs. First we will
find the best responses of the firms in terms of their decision variables x1 and
p2. From (1) and (2),

x2 =
1

p2
− θ2x1

and
x1 =

1

p1
− θ1x2,

so the profit of firm 1 can be written as

π1 = (p1 − c1)x1

=

⎛⎝ 1

x1 + θ1
³
1
p2
− θ2x1

´ − c1
⎞⎠x1

=
p2x1

θ1 + x1p2(1− θ1θ2)
− c1x1.

Assuming interior optimum, the first order condition implies that

∂π1
∂x1

=
p2θ1

(θ1 + x1p2(1− θ1θ2))
2 − c1 = 0.

Therefore the best response of firm 1 is the following:

x1 =
1

1− θ1θ2

Ãs
θ1
p2c1

− θ1
p2

!
. (3)

The profit of firm 2 has the form

π2 = (p2 − c2)x2

= (p2 − c2)
µ
1

p1
− θ1x2

¶
= 1− c2

p2
− p2θ2x1 + c2θ2x1

3



with first order condition
∂π2
∂p2

=
c2
p22
− θ2x1 = 0,

implying that the best response of firm 2 is

p2 =

r
c2

θ2x1
. (4)

To characterize the CB equilibrium it is convenient to re-define these
reaction functions in the quantity space (x1, x2):

θ1(θ2x1 + x2) = c1(x1 + θ1x2)
2

and
θ2x1 = c2(θ2x1 + x2)

2,

which are simple consequences of relations (2), (3) and (4). Dividing the
first equation by the second and introducing new variables z = x2

x1
and c = c2

c1
give, after arrangements,

c
θ1
θ2
(z + θ2) =

µ
1 + θ1z

θ2 + z

¶2
. (5)

The intersection of the right hand side and the left hand side functions de-
termines the CB equilibrium ratio of outputs.
Let us denote the left hand side by f(z),

f(z) = c
θ1
θ2
(z + θ2),

and the right hand side by g(z),

g(z) =

µ
1 + θ1z

θ2 + z

¶2
.

Then it is easy to see that

g(0) =
1

θ22
> 0,

g0(z) = −2(1− θ1θ2)(1 + θ1z)

(z + θ2)3
< 0,

g00(z) =
2(1− θ1θ2)(3− θ1θ2 + 2θ1z)

(z + θ2)4
> 0.
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Clearly, f(z) strictly increases, linear and f(0) = cθ1. The graph of functions
f(z) and g(z) are illustrated in Figure 1. A unique positive intersection
α = α(c, θ1, θ2) exists if and only if the following condition holds:

Assumption 2. c <
1

θ1θ22
.

a 1 - cq1  q2
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅ
cq1  q2

z

1êq2
2

q1
2

cq1

fHaL=gHaL

gHzL f HzL

Figure 1. Determination of optimal output ratio.

It is also easy to see, as shown in Figure 1, that

α <
1− cθ1θ22
cθ1θ2

.

The equilibrium of the CB duopoly is clearly given by

x∗1 =
θ2

c2(α+ θ2)2
,

p∗2 =
c2(α+ θ2)

θ2
.
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3 Continuous Dynamics without Time De-
lays

The best response CB dynamic system has the form

ẋ1 = k1

Ã
1

1− θ1θ2

Ãs
θ1
p2c1

− θ1
p2

!
− x1

!
,

ṗ2 = k2

µr
c2

θ2x1
− p2

¶
.

Its Jacobian is

J =

⎛⎝ −k1 k1γ1

k2γ2 −k2

⎞⎠ ,
where γi is the derivative of firm i

0s reaction function at the CB equilibrium.
Simple calculation shows that

γ1 =
θ1θ

2
2

(1− θ1θ2)c22(α+ θ2)2

⎛⎝1− 1
2

s
c(α+ θ2)

θ1θ2

⎞⎠
and

γ2 = −
c22(α+ θ2)

3

2θ22
,

furthermore by using (5), we have

γ1γ2 =
(1− θ1θ2)− αθ1 − θ1θ2

4(1− θ1θ2)
.

The characteristic equation is

λ2 + (k1 + k2)λ+ k1k2(1− γ1γ2) = 0.

Since

γ1γ2 =
(1− θ1θ2)− αθ1 − θ1θ2

4(1− θ1θ2)
<
1

4
, (6)

both coefficients are positive, therefore the real parts of the eigenvalues are
confirmed to be negative. Therefore the CB dynamic system is always locally
asymptotically stable under Assumptions 1 and 2.
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4 Continuous Dynamics with Fixed Time De-
lays

Let us denote the reaction functions of the firms by R1(p2) and R2(x1) and
assume that each firm i has a fixed time delay Ti on its competitor’s variable.
The delayed dynamic system is

ẋ1(t) = k1 {R1(p2(t− T1))− x1(t)} , (7)

ṗ2(t) = k2 {R2(x1(t− T2))− p2(t)} .

By linearizing these equations, we have a linear system:

ẋ1δ(t) = k1γ1p2δ(t− T1)− k1x1δ(t), (8)

ṗ2δ(t) = k2γ2x1δ(t− T2)− k2p2δ(t),

where x1δ and p2δ denote the deviations of x1 and p2 from their equilibrium
levels. By looking for the solution in the usual exponential forms x1δ = eλtu
and p2δ = eλtv, and substituting these functions into equations (8), we have⎛⎝ −k1 − λ k1γ1e

−λT1

k2γ2e
−λT2 −k2 − λ

⎞⎠⎛⎝ u

v

⎞⎠ =

⎛⎝ 0

0

⎞⎠ .
Nontrivial solution exists only if the determinant of the coefficient matrix is
zero. Therefore the characteristic equation is

λ2 + (k1 + k2)λ+ k1k2 − k1k2γe−λτ = 0, (9)

where we introduce two new variables, τ denoting the sum of the two time
lags and γ denoting the product of the derivatives of the reaction functions,

τ = T1 + T2 and γ = γ1γ2.

First we show that λ = 0 cannot be an eigenvalue. Suppose λ = 0, then
the characteristic function becomes

k1k2(1− γ) > 0,
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which implies that λ = 0 cannot be a solution. In order to understand the
stability switches of the delayed dynamic system, it is crucial to determine
the critical values of time lag at which the characteristic equation may have
a pair of conjugate pure imaginary roots.
Suppose now that λ = iω, with ω > 0, is a solution of the characteristic

equation. Introducing a new variable θ = ωτ , we have

−ω2 + k1k2 − k1k2γ cos θ = 0 (10)

and
(k1 + k2)ω + k1k2γ sin θ = 0. (11)

Thus, by moving −ω2+k1k2 and (k1+k2)ω to the right hand sides, squaring
and adding the resulted equations, we obtain

(k1k2γ)
2 = (−ω2 + k1k2)2 + (k1 + k2)2ω2.

Hence
ω4 + (k21 + k

2
2)ω

2 + (k1k2)
2(1− γ2) = 0. (12)

Introducing z = ω2 makes the left hand side a quadratic polynomial in terms
of z,

ϕ(z) = z2 + (k21 + k
2
2)z + (k1k2)

2(1− γ2). (13)

Notice that
ϕ(0) = (k1k2)

2(1− γ2)

and
ϕ0(0) = (k21 + k

2
2) > 0,

furthermore the discriminant of the quadratic polynomial (13) is always pos-
itive. For γ ∈ [−1, 1

4
), ϕ(0) > 0 with ϕ0(0) > 0 implying that ϕ(z) = 0 has

real solutions, both are negative. Thus there are no imaginary solutions such
as λ = iω with ω > 0.
In order to prove that the equilibrium is always locally asymptotically

stable, we will show that with sufficiently small |γ| , this is the case. Let
λ = a + ib be a solution of equation (9) with a ≥ 0. Substituting this
solution into the equation we have

a2 − b2 + 2abi+ (k1 + k2)(a+ bi) + k1k2
£
1− γe−aτ(cos bτ − i sin bτ)

¤
= 0.

The imaginary part of this equation shows that

2ab+ (k1 + k2)b+ k1k2γe
−aτ sin bτ = 0,
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which can be written as

2a = −(k1 + k2)− C

where

|C| = k1k2 |γ| e−aττ
¯̄̄̄
sin bτ

bτ

¯̄̄̄
≤ k1k2τ |γ| .

So, if |γ| < k1+k2
k1k2τ

, then a < 0, which completes the proof. Hence we have:

Theorem 1 If −1 5 γ <
1

4
, no stability switching occurs and the delayed

system is always locally asymptotically stable.

Consider next the case where γ < −1. In this case, ϕ(0) < 0 and ϕ0(0) >
0, therefore, ϕ(z) = 0 has one positive and one negative root,

z± = ω2± =
−(k21 + k22)±

p
(k21 + k

2
2)
2 − 4(k1k2)2(1− γ2)

2
. (14)

In this case, only one imaginary root, λ = iω+, exists with ω+ > 0. We
select τ as the bifurcation parameter. The critical level of time lag for which
stability switching may occur is determined by

τ ∗ =
θ∗

ω+
,

where

cos θ∗ =
k1k2 − ω2+
k1k2γ

and

sin θ∗ = −(k1 + k2)ω+
k1k2γ

> 0

as consequences of the definition of θ and relations (10) and (11).
We have

k1k2 − ω2+ =
(k1 + k2)

2 −
p
(k21 + k

2
2)
2 − 4(k1k2)2(1− γ2)

2
.

By comparing the squares of the two terms of the numerator, it is easy to
see that

sign
©
k1k2 − ω2+

ª
= sign

nh
(k1 + k2)−

p
k1k2γ

i h
(k1 + k2) +

p
k1k2γ

io
.
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The first factor of the right hand side is always positive. Define next

γ̄ = −k1 + k2√
k1k2

. (15)

It is easy to see that γ̄ < −1. The second factor is negative if and only if
γ < γ̄. Hence

k1k2 − ω2+

⎧⎨⎩ ≥ 0 if γ̄ ≤ γ < −1,

< 0 otherwise.

Notice in addition that by using equation (12), we have

(k1k2 − ω2+)
2 = k21k

2
2 − 2k1k2ω2+ + ω4+

= k21k
2
2γ
2 − (k1 − k2)2ω2+

< k21k
2
2γ
2,

so
¯̄
k1k2 − ω2+

¯̄
< |k1k2γ| , therefore θ∗ can be uniquely defined for all γ < −1.

If k1k2 − ω2+ ≥ 0, then θ∗ ∈ [π
2
,π) and if k1k2 − ω2+ < 0, then θ∗ ∈ (0, π

2
).

In order to observe stability switching, we need to determine the sign of
the derivative of the real part of the purely imaginary root. We can think of
the roots of the characteristic equation as continuous functions in terms of
the delay τ . By implicit differentiation of equation (9) we have©

2λ+ (k1 + k2) + k1k2γτe
−λτª dλ

dτ
= −k1k2γλe−λτ .

For convenience, we study (dλ/dτ)−1 instead of dλ/dτ . We haveµ
dλ

dτ

¶−1
= −2λ+ (k1 + k2) + k1k2γτe

−λτ

k1k2γλe−λτ

and from the characteristic equation we obtain

e−λτ =
λ2 + (k1 + k2)λ+ k1k2

k1k2γ
.

Thus µ
dλ

dτ

¶−1
= − 2λ+ (k1 + k2)

λ(λ2 + (k1 + k2)λ+ k1k2)
− τ

λ
.
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Therefore,

sign

½
d(Reλ)

dτ

¾
= sign

(
Re

µ
dλ

dτ

¶−1)

= sign

½
Re

µ
− 2λ+ (k1 + k2)

λ(λ2 + (k1 + k2)λ+ k1k2)

¶¾

= sign

½
Re

µ
(k1 + k2) + i2ω

(k1 + k2)ω2 − i(k1k2 − ω2)ω

¶¾

= sign

½
(k21 + k

2
2 + 2ω

2)

(k1k2γ)2

¾
> 0.

Consequently, the crossing of the imaginary axis is from left to right as τ
increases and thus resulting in the loss of stability. In summary, we have

Theorem 2 Given γ < −1, the delayed dynamic system with fixed time
delays is locally asymptotically stable when τ < τ ∗ and unstable when τ > τ ∗

where τ ∗ = θ∗/ω+ with

ω2+ =
−(k21 + k22) +

p
(k21 + k

2
2)
2 − 4(k1k2)2(1− γ2)

2
,

sin θ∗ = −(k1 + k2)ω+
k1k2γ

> 0,

cos θ∗ =
k1k2 − ω2+
k1k2γ

,

where θ∗ ∈ [π
2
,π) if k1k2 − ω2+ ≥ 0, and θ∗ ∈ (0, π

2
) otherwise.

5 Dynamics with Continuously Distributed
Lags

Matsumoto and Szidarovszky(2006) derived the stability conditions in the de-
layed Cournot competition with continuously distributed time lags. Instead
of assuming fixed time delays, they assumed that the lags were continuously
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distributed with exponential kernel functions. Similarly, in equations (7),
p2(t− T1) and x1(t− T2) are now replaced by their expectations:

pe2(t) =

Z t

0

w(t− s, T1)p2(s)ds

and

xe1(t) =

Z t

0

w(t− s, T2)x1(s)ds,

where
w(t− s, T ) = 1

T
e−

t−s
T .

So a system of Volterra-type integro-differential equations is obtained. As
it has been shown in Matsumoto and Szidarovszky(2006), the characteristic
equation of the system has the special form,

(λ+ k1)(λ+ k2)(1 + λT1)(1 + λT2)− k1k2γ = 0, (16)

where γ = γ1γ2 as before. This is a quartic equation for λ,

a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0

with coefficients

a0 = T1T2,

a1 = T1 + T2 + T1T2(k1 + k2),

a2 = 1 + T1T2k1k2 + (k1 + k2)(T1 + T2),

a3 = k1 + k2 + k1k2(T1 + T2),

a4 = k1k2(1− γ).

Since all coefficients are positive, the Routh-Hurwitz criterion (see Szidarovszky
and Bahill(1998)) implies that all eigenvalues have negative real parts if and
only if ¯̄̄̄

a1 a0
a3 a2

¯̄̄̄
> 0 and

¯̄̄̄
¯̄ a1 a0 0
a3 a2 a1
0 a4 a3

¯̄̄̄
¯̄ > 0.

Simple algebra shows that the second order determinant is always positive.
The sign of the third order determinant depends on the value of γ. Solving
the inequality for γ gives the following result:

12



Theorem 3 For the dynamic system with continuously distributed time lags,
the equilibrium is locally asymptotically stable if

γ > −(k1 + k2)(T1 + T2)(1 + k1T1)(1 + k2T1)(1 + k1T2)(1 + k2T2)
k1k2(T1 + T2 + T1T2(k1 + k2))2

,

and is unstable if this relation is violated with strict opposite inequality.

6 Comparison of The Two Approaches

We compared the effects caused by fixed and continuously distributed lags
on stability by determining and illustrating the stability regions in the two
cases. Figure 2 shows the division of the (T1, c) space in which the upper
bold curve and the lower bold curve are the boundaries between the stable
regions and the unstable regions in the cases of fixed lags and continuously
distributed lags, respectively. In particular, from Theorems 2, 3 and relation
(6), these boundaries are given by

(T1 + T2)ω+ = cos
−1
µ

k1k2 − ω2+
k1k2γCB(c, θ1, θ2)

¶
,

where ω+ is obtained from equation (14), and

γCB(c, θ1, θ2) = −
(k1 + k2)(T1 + T2)(1 + k1T1)(1 + k2T1)(1 + k1T2)(1 + k2T2)

k1k2(T1 + T2 + T1T2(k1 + k2))2
.

In both cases γCB(c, θ1, θ2) endogenously determines the product of deriva-
tives of the reaction functions and is given as

γCB(c, θ1, θ2) =
(1− θ1θ2)− α(c, θ1, θ2)θ1 − θ1θ2

4(1− θ1θ2)
.

We set k1 = k2 = 0.8, θ1 = θ2 = 0.8 and T2 = 2.5 in Figure 2 in which
D means distributed time lags and F means fixed time lags. It is numeri-
cally confirmed that there are only small differences between the symmetric
(k1 = k2 and θ1 = θ2) and nonsymmetric (k1 6= k2 and/or θ1 6= θ2) cases.
It is also proved that the dynamics with fixed time lags is unstable below
the upper bold curve and stable above it. Similarly, the dynamics with con-
tinuously distributed time lags is unstable below the lower bold curve and
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stable above the curve. As we have proved earlier, the CB dynamics without
time delay is always locally asymptotically stable. By introducing time lags,
this stability might be lost and an instability region develops. Notice that in
the middle shaded region surrounded by the bold curves, the CB equilibrium
is stable under continuously distributed time lags and unstable under fixed
time lags. In other words, the instability region is larger when fixed time
lags are assumed. Therefore it is demonstrated that the destabilizing effect
of fixed time lags is larger than that in the case of continuously distributed
time lags.

1 2 3 4 5
T1

0.1

0.2

0.3

0.4
c

@D&F: StableD

@D: Stable; F: Unstable D

@D&F: UnstableD

1 2 3 4 5
T1

0.1

0.2

0.3

0.4
c

Figure 2. Stability regions in CC competition.

7 Heterogeneous vs Homogeneous Competi-
tion

In Matsumoto and Szidarovszky(2006), the delayed continuous dynamic sys-
tem is considered under the traditional Cournot competition (abbreviated
as Cournot-Cournot or CC competition) in which both firms are quantity-
setters. In this case, the firms have the best response functions

R1(x2) =

r
θ1x2
c1
− θ1x2
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and

R2(x1) =

r
θ2x1
c2
− θ2x1.

Equation (5) has the form

c
θ1
θ2
z =

µ
1 + θ1z

θ2 + z

¶2
, (17)

which has always a unique positive solution αC = αC(c, θ1, θ2) if Assumption
1 is fulfilled. The CC equilibrium is given as

xC1 =
θ2

c2(θ2 + αC)2

and

xC2 =
αCθ2

c2(θ2 + αC)2
.

The Jacobian of the corresponding best response dynamics has the same
form as in the CB duopoly case with the only difference that in the CC case,
α = αC is the solution of (17), and

γC := γC1 γ
C
2 =

1

4

½
1 + θ1θ2 −

µ
αCθ1 +

1

αC
θ2

¶¾
.

It can be proved that with appropriate values of αC, γC1 γ
C
2 can have any real

value between −∞ and 1
4
similarly to the CB case. Figure 3 illustrates the

stability regions in the CC competition case. The dotted upper and lower
curves have the same meanings as the upper and lower bold curves in Figure
2. Thus it can be said that under CC competition, fixed time lags have the
larger destabilizing effect in comparison with continuously distributed time
lags.
The numerical results of Figures 2 and 3 are repeated in a different way

in Figure 4, where it can be seen that both dotted boundary curves of CC
competition are located below the corresponding boundary curves of CB com-
petition. In the middle shaded region between these boundary curves, the
equilibrium is stable under CC competition and unstable under CB compe-
tition. Consequently, the stability regions are much larger for CC dynamics
than for CB dynamics showing that CC competition is more stable than CB
competition.
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1 2 3 4 5
T1

0.02

0.04

0.06

0.08

0.1

c

@D&F: StableD

@D: Stable ; F: UnstableD

@D&F: UnstableD

1 2 3 4 5
T1

0.02

0.04

0.06

0.08

0.1

c

Figure 3. Stability regions in CB competition.

In Matsumoto and Szidarovszky(2006), the case of Bertrand-Bertrand
(BB) competition has been also discussed when both firms are price-setters.
In this case the reaction functions of the two firms are

p1 =

r
c1p2
θ1

and

p2 =

r
c2p1
θ2
.

The equilibrium prices and outputs are

pB1 =
3

s
c21c2

θ21θ2
, pB2 =

3

s
c22c1

θ22θ1
,

xB1 =
1

1− θ1θ2

3

s
θ21θ2
c1c2

⎛⎝ 3

r
1

c1
− 3

s
θ21θ2
c2

⎞⎠
and

xB2 =
1

1− θ1θ2

3

s
θ22θ1
c1c2

⎛⎝ 3

r
1

c2
− 3

s
θ22θ1
c1

⎞⎠ .
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Simple calculation shows that the form of the Jacobian of the corresponding
dynamic system is the same as in the CB case with the only difference that
in the BB case

γB = γB1 γ
B
2 =

1

4
.

Because of this special value of γB, the BB dynamics is always locally as-
ymptotically stable without and also with time delays with both fixed and
continuously distributed time lags. Notice that the results of Section 3, The-
orem 1 (with γ = 1

4
) and Theorem 3 can be applied in the BB case without

any limitation.
If we call both BB and CC competitions homogeneous, in which both firms

are either price-setters or quantity setters and CB competition heterogeneous,
in which behavioral specification of one firm is different from that of the other
firm, then we can summarize our results of this section as follows: both
homogeneous competitions are much more stable than the heterogeneous
competition regardless of the forms of the time delays.

1 2 3 4 5
T1

0.1

0.2

0.3

0.4
c Fixed Delays

@CB&CC: StableD

@CB: Unstable; CC: StableD

@CB&CC: UnstableD

1 2 3 4 5
T1

0.1

0.2

0.3

0.4
c Fixed Delays

1 2 3 4 5
T1

0.02

0.04

0.06

0.08

0.1
c Distributed Delays

@CB&CC: StableD

@CB: Unstable; CC: StableD

@CB&CC: UnstableD

1 2 3 4 5
T1

0.02

0.04

0.06

0.08

0.1
c Distributed Delays

Figure 4. Stability regions in CC and CB competitions.

8 Concluding Remarks

In this paper, heterogeneous duopolies were examined, where one firm is
quantity-setter and the other is price-setter. After the reaction functions of
the firms were determined, the unique CB-equilibrium was computed. Con-
tinuous dynamics were investigated without time delays, and with fixed and

17



continuously distributed time lags. The CB dynamics without time delay is
always locally asymptotically stable. This stability can be lost in the presence
of time delays. Complete stability analysis was presented for two types of
time lags, and the stability regions were illustrated. We have seen that fixed
time lags have larger destabilizing effect on the dynamics than continuously
distributed time lags. Similar conclusion could be reached in the case of CC
duopolies, however the instability regions were much smaller in the case of
CC dynamics than in CB dynamics. Therefore we can conclude that if any
one of the firms of a CC competition changes from quantity setting behavior
to price setting policy, then it has a destabilizing effect on the equilibrium.
However, if the other firm also switches to price setting policy, then the
corresponding dynamic system becomes always locally asymptotically stable
with and without time delays. Hence, homogeneous competitions in which
both firms are either quantity setters or price setters are more stable than
the heterogeneous competitions in which one firm is quantity setter and the
other is price setter.
In our study we considered only exponential weighting functions for con-

tinuously distributed time delays, more complex weighting functions will be
examined in a future paper.
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